WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В классической механике ско́бки Пуассо́на[1] (также возможно ско́бка Пуассо́на[2] и скобки Ли) — это оператор, играющий центральную роль в определении эволюции во времени динамической системы. Эта операция названа в честь С.-Д. Пуассона.

Скобки Пуассона векторных полей

Пусть и  — векторные поля на ,  — оператор производной Ли по направлению векторного поля . Коммутатор операторов и есть дифференциальный оператор первого порядка, поэтому существует такое векторное поле , для которого[3][Notes 1]

Это векторное поле называется коммутатором, скобками Ли или скобками Пуассона двух векторных полей. Явное выражение для скобок Ли полей:

В голономном базисе оно принимает вид

Свойства

Все, кроме последних двух, доказываются простым подсчётом.

  • Линейность: - это функция, не зависящая от и .
  • Антикоммутативность:
  • Тождество Якоби:
  • Операция коммутирования задаёт на множестве векторных полей структуру алгебры Ли.

Скобки Пуассона функций

Пусть  — симплектическое многообразие. Симплектическая структура на позволяет ввести на множестве функций на операцию скобок Пуассона, обозначаемую или и задаваемую по правилу[1][Notes 2]

где (также ) — векторное поле, соответствующее функции Гамильтона . Оно определяется через дифференциал функции и изоморфизм между 1-формами и векторами, задаваемый (невырожденной) формой . Именно, для любого векторного поля

Алгебра Ли функций Гамильтона

В силу кососимметричности и билинейности , скобка Пуассона также будет кососимметричной и билинейной:

Выражение

является линейной функцией вторых производных каждой из функций . Однако,

Это выражение не содержит вторых производных . Аналогично, оно не содержит вторых производных и , а потому

то есть скобки Пуассона удовлетворяют тождеству Якоби. Таким образом, скобки Пуассона позволяют ввести на множестве функций на структуру алгебры Ли. Из тождества Якоби следует, что для любой функции

,

то есть

— операция построения гамильтонова векторного поля по функции задаёт гомоморфизм алгебры Ли функций в алгебру Ли векторных полей.

Свойства

  • Скобки Пуассона невырождены:
  • Функция является первым интегралом для гамильтоновой системы с гамильтонианом тогда и только тогда, когда
  • Скобка Пуассона двух первых интегралов системы — снова первый интеграл (следствие тождества Якоби).
  • Рассмотрим эволюцию гамильтоновой системы с функцией Гамильтона , заданной на многообразии . Полная производная по времени от произвольной функции запишется в виде
[4]


Примечания

  1. Некоторые авторы [Арнольд] используют определение с противоположным знаком, при этом также изменяется знак в определении скобок Пуассона функций (см. ниже). Этот подход продиктован, по-видимому, стремлением сохранить как естественные геометрические определения гамильтоновых полей и их свойств, так и традиционную форму записи скобок Пуассона в координатах. Однако, при этом разрушается естественная симметрия между коммутаторами производных Ли, векторов и функций. Дальнейшие проблемы возникают при переходе к общим понятиям дифференциальной геометрии (формы, векторнозначные формы, различные дифференцирования), где отсутствие указанной симметрии неоправданно усложняет формулы. Поэтому в данной статье будут использованы другие определения, с оговорками.
  2. В некоторых книгах [Арнольд] принято определение с противоположным знаком, а именно При этом также определяется с противоположным знаком коммутатор векторных полей (см. выше), а выражение для скобки Пуассона в координатах принимает традиционный вид, однако появляется лишний минус в выражении и формуле для коммутатора полей.
  3. В [Арнольд], [Гантмахер] выражение имеет противоположный знак (аналогично вышеуказанным замечаниям). Традиционно выражение записывают как в [Гантмахер].

Литература

  1. 1 2 Гантмахер Ф. Р. Лекции по аналитической механике: Учебное пособие для вузов / Под ред. Е. С. Пятницкого. — 3-е изд. — М.: ФИЗМАТЛИТ, 2005. — 264 с. — ISBN 5-9221-0067-X.
  2. Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. М.: Едиториал УРСС, 2003. — 416 с. 1500 экз. ISBN 5-354-00341-5.
  3. Ivan Kolář, Peter W. Michor, Jan Slovák Natural operations in differential geometry, — Springer-Verlag, Berlin, Heidelberg, 1993. — ISBN 3-540-56235-4, ISBN 0-387-56235-4.
  4. Ландау Л. Д, Лифшиц Е. М. Теоретическая физика. Том 1. / доктор физико-математических наук Л. П. Питаевский. — 5-е. — ФИЗМАТЛИТ, 2004. — С. 176-179. ISBN 5-9221-0055-6.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии