WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В теории категорий унивалентный функтор (соотв. полный функтор) — это функтор, который инъективен (соотв. сюръективен) на каждом множестве морфизмов с фиксированными образом и прообразом.

Более явно, пусть у нас есть локально малые категории C и D и пусть F : CD — функтор из C в D. Этот функтор индуцирует функцию

для каждой пары объектов X и Y из C. Функтор F называется

для каждых X и Y в C.

Свойства

  • Унивалентный функтор не обязательно инъективен на объектах категории C, поэтому образ вполне унивалентного функтора не обязан быть категорией, изоморфной C. Аналогично, полный функтор не обязательно сюръективен на объектах. Однако вполне унивалентный функтор инъективен на объектах с точностью до изоморфизма, то есть если F : CD является вполне унивалентным и , то (в этом случае говорят, что функтор F отражает изоморфизмы).
  • Любой унивалентный функтор отражает мономорфизмы и эпиморфизмы. Из этого следует, что любой унивалентный функтор из сбалансированной категории отражает изоморфизмы.

Примеры

  • Забывающий функтор U : GrpSet является унивалентным, так как гомоморфизм групп однозначно определяется функцией на множествах-носителях. Категория со строгим функтором в Set называется конкретной категорией.
  • Функтор, вкладывающий Ab в Grp вполне унивалентен.

См. также

Литература

  • Маклейн С. Категории для работающего математика = Categories for the working mathematician / Пер. с англ. под ред. В. А. Артамонова. М.: Физматлит, 2004. — 352 с. ISBN 5-9221-0400-4.
  • Букур И., Деляну А. Введение в теорию категорий и функторов. М.: Мир, 1972.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии