Парадокс Монти Холла — одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу.
Задача формулируется как описание игры, основанной на американской телеигре «Let’s Make a Deal», и названа в честь ведущего этой передачи. Наиболее распространённая формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine, звучит следующим образом:
![]() | Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас — не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор? | ![]() |
После публикации немедленно выяснилось, что задача сформулирована некорректно: не все условия оговорены. Например, ведущий может придерживаться стратегии «адский Монти»: предлагать сменить выбор тогда и только тогда, когда игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора будет вести в такой ситуации к гарантированному проигрышу (см. ниже).
Наиболее популярной является задача с дополнительным условием — участнику игры заранее известны следующие правила:
В нижеследующем тексте обсуждается задача Монти Холла именно в этой формулировке.
Дверь 1 | Дверь 2 | Дверь 3 | Результат, если менять выбор | Результат, если не менять выбор |
---|---|---|---|---|
Авто | Коза | Коза | Коза | Авто |
Коза | Авто | Коза | Авто | Коза |
Коза | Коза | Авто | Авто | Коза |
Для стратегии выигрыша важно следующее: если вы меняете выбор двери после действий ведущего, то вы выигрываете, если изначально выбрали проигрышную дверь. Это произойдёт с вероятностью 2⁄3, так как изначально выбрать проигрышную дверь можно 2 способами из 3.
Но часто при решении этой задачи рассуждают примерно так: ведущий всегда в итоге убирает одну проигрышную дверь, и тогда вероятности появления автомобиля за двумя не открытыми становятся равны ½, вне зависимости от первоначального выбора. Но это неверно: хотя возможностей выбора действительно остаётся две, эти возможности (с учётом предыстории) не являются равновероятными. Это так, поскольку изначально все двери имели равные шансы быть выигрышными, но затем имели разные вероятности быть исключёнными.
Для большинства людей этот вывод противоречит интуитивному восприятию ситуации, и благодаря возникающему несоответствию между логическим выводом и ответом, к которому склоняет интуитивное мнение, задача и называется парадоксом Монти Холла.
Ещё более наглядной ситуация с дверями становится, если представить что дверей не 3 а, скажем 1000, и после выбора игрока ведущий убирает 998 лишних, оставляя 2 двери: ту, которую выбрал игрок и ещё одну. Представляется более очевидным, что вероятности нахождения приза за этими дверьми различны, и не равны ½. Если мы меняем дверь, то проигрываем только в том случае, если сначала выбрали призовую дверь, вероятность чего 1:1000. Выигрываем же мы в том случае, если наш изначальный выбор был неправильным, а вероятность этого — 999 из 1000. В случае с 3 дверьми логика сохраняется, но вероятность выигрыша при смене решения соответственно 2⁄3, а не 999⁄1000.
Другой способ рассуждения — замена условия эквивалентным. Представим, что вместо осуществления игроком первоначального выбора (пусть это будет всегда дверь № 1) и последующего открытия ведущим двери с козой среди оставшихся (то есть всегда среди № 2 и № 3), представим, что игроку нужно угадать дверь с первой попытки, но ему предварительно сообщается, что за дверью № 1 автомобиль может быть с исходной вероятностью (33 %), а среди оставшихся дверей указывается за какой из дверей автомобиля точно нет (0 %). Соответственно, на последнюю дверь всегда будет приходиться 67 %, и стратегия её выбора предпочтительна.
Классическая версия парадокса Монти Холла утверждает, что ведущий обязательно предложит игроку сменить дверь, независимо от того, выбрал тот машину или нет. Но возможно и более сложное поведение ведущего. В этой таблице кратко описаны несколько вариантов поведения. Если не сказано противное, призы равновероятно расположены за дверями, ведущий равновероятно выбирает из двух коз, и т. д.
Возможное поведение ведущего | |
---|---|
Поведение ведущего | Результат |
«Адский Монти»: ведущий предлагает сменить, если дверь правильная[1]. | Смена всегда даст козу. |
«Ангельский Монти»: ведущий предлагает сменить, если дверь неправильная[2]. | Смена всегда даст автомобиль. |
«Несведущий Монти» или «Монти Бух»: ведущий нечаянно падает, открывается дверь, и оказывается, что за ней не машина. Другими словами, ведущий сам не знает, что за дверями, открывает дверь полностью наугад, и только случайно за ней не оказалось автомобиля[3][4][5]. | Смена даёт выигрыш в ½ случаев. Именно так устроено американское шоу «Deal or No Deal» — правда, случайную дверь открывает сам игрок, и если за ней нет автомобиля, ведущий предлагает сменить. |
Ведущий выбирает одну из коз и открывает её, если игрок выбрал другую дверь. | Смена даёт выигрыш в ½ случаев. |
Ведущий всегда открывает козу. Если выбран автомобиль, левая коза открывается с вероятностью p и правая с вероятностью q=1−p.[4][5][6] | Если ведущий открыл левую дверь, смена даёт выигрыш с вероятностью . Если правую — . Однако испытуемый никак не может повлиять на вероятность того, что будет открыта правая дверь — независимо от его выбора это произойдёт с вероятностью . |
То же самое, p=q=½ (классический случай). | Смена даёт выигрыш с вероятностью 2⁄3. |
То же самое, p=1, q=0 («бессильный Монти» — усталый ведущий стоит у левой двери и открывает ту козу, которая ближе). | Если ведущий открыл правую дверь, смена даёт гарантированный выигрыш. Если левую — вероятность ½. |
Ведущий открывает козу всегда, если выбран автомобиль, и с вероятностью ½ в противном случае.[7] | Смена даёт выигрыш с вероятностью ½. |
Общий случай: игра повторяется многократно, вероятность спрятать автомобиль за той или иной дверью, а также открыть ту или иную дверь произвольная, однако ведущий знает, где автомобиль, и всегда предлагает смену, открывая одну из коз.[8][9] | Равновесие Нэша: ведущему выгоднее всего именно парадокс Монти Холла в классическом виде (вероятность выигрыша 2⁄3). Машина прячется за любой из дверей с вероятностью ⅓; если есть выбор, открываем любую козу наугад. |
То же самое, но ведущий может не открывать дверь вообще. | Равновесие Нэша: ведущему выгодно не открывать дверь, вероятность выигрыша ⅓. |
![]() |
Парадокс Монти Холла в Викиучебнике |
---|---|
![]() |
Парадокс Монти Холла на Викискладе |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .