WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Задача трёх узников — парадокс теории вероятностей, имеющий общую природу с парадоксом Монти Холла. Этот парадокс впервые опубликовал Мартин Гарднер в 1959 году.

Формулировка

Трое заключённых, A, B и С, заключены в одиночные камеры и приговорены к смертной казни. Губернатор случайным образом выбирает одного из них и милует его. Стражник, охраняющий заключённых, знает, кто помилован, но не имеет права сказать этого. Заключённый A просит стражника сказать ему имя того (другого) заключённого, кто точно будет казнён: «Если B помилован, скажи мне, что казнён будет C. Если помилован C, скажи мне, что казнён будет B. Если они оба будут казнены, а помилован я, подбрось монету, и скажи имя B или C».

Стражник говорит заключённому A, что заключённый B будет казнён. Заключённый A рад это слышать, поскольку он считает, что теперь вероятность его выживания стала 1/2, а не 1/3, как была до этого. Заключённый A тайно говорит заключённому С, что B будет казнён. Заключённый С также рад это слышать, поскольку он всё ещё полагает, что вероятность выживания заключённого А — 1/3, а его вероятность выживания возросла до 2/3. Как такое может быть?

Решение

Правильный ответ заключается в том, что заключённый A не получил информацию о своей собственной судьбе. Заключённый A до того, как спросить стражника, оценивает свои шансы как 1/3, так же как B и C. Когда стражник говорит, что B будет казнён, это всё равно, что вероятность того, что С помилован (вероятность 1/3) или A помилован (вероятность 1/3), и монета, выбиравшая между B и C, выбрала B. (Вероятность — 1/2; в целом вероятность того, что назван B — 1/6, поскольку A помилован). Поэтому, узнав, что B будет казнён, заключённый A оценивает шансы на помилование таким образом: его шансы теперь — 1/3, но теперь, зная, что B точно будет казнён, шансы С на помилование теперь 2/3.

Математическая формулировка

Обозначим и как события, означающие, что соответствующий заключённый будет помилован, и событие, означающее, что охранник назовёт имя B. Тогда, используя теорему Байеса вероятность помилования заключённого A:

Интуитивное решение

Заключённый A имеет шансы на помилование 1/3. Знание того, кто из B и C будет казнён, не меняет этого шанса. После того как заключённый А узнаёт, что B будет казнён, он осознаёт, что если он сам не помилован, то шанс того, что C будет помилован, теперь 2/3.

Материалы для понимания

Так же, как с проблемой Монти Холла, здесь будет полезно посмотреть на эту проблему с разных точек зрения.

Список возможных случаев

Могут возникнуть следующие случаи:

  1. A помилован, и стражник объявляет, что B будет казнён: 1/3×1/2=1/6 от всех случаев
  2. A помилован, и стражник объявляет, что C будет казнён: 1/3×1/2=1/6 от всех случаев
  3. B помилован, и стражник объявляет, что C будет казнён: 1/3 от всех случаев
  4. C помилован, и стражник объявляет, что B будет казнён: 1/3 от всех случаев

С оговоркой, что в ситуации когда А помилован (вероятность такой ситуации 1/3) стражник случайно выбирает имя казнённого, получается шанс 1/2, что он скажет «B» и 1/2 что он скажет «C». Это означает что вероятности: 1/6 в то время как (1/3 [А действительно помилован] * 1/2 [стражник называет B]), стражник называет B, потому что A помилован, и (1/3 [А действительно помилован] * 1/2 [стражник называет C]) стражник называет C, потому что A помилован. Всего это составляет 1/3 от всех случаев (1/6 + 1/6) когда А помилован.

Теперь ясно, что стражник отвечает «Казнён будет B» на вопрос заключённого А (это случаи 1 и 4) в 1/2 от всех случаев; 1/3 — вероятность того, что С помилован, но A всё равно будет казнён (случай 4); и только 1/6 — вероятность того, что A помилован (случай 1). Следовательно, шансы С: (1/3)/(1/2)=2/3, шансы A: (1/6)/(1/2)=1/3.

Основной загвоздкой здесь является то, что стражник не может говорить имя того, кто будет помилован. Если исключить это условие, исходную задачу можно переформулировать так: заключённый просит стражника сказать ему судьбу одного из двух заключённых B и С, не уточняя, кто будет казнён. В этом случае стражник подбрасывает монету, чтобы выбрать между B и С, и затем говорит судьбу одного из них. При такой формулировке возможны следующие случаи.

  1. A помилован, стражник говорит: B будет казнён (1/6)
  2. A помилован, стражник говорит: C будет казнён (1/6)
  3. B помилован, стражник говорит: B помилован (1/6)
  4. B помилован, стражник говорит: C будет казнён (1/6)
  5. C помилован, стражник говорит: B будет казнён (1/6)
  6. C помилован, стражник говорит: C помилован (1/6)

Все исходы имеют равную вероятность — 1/6. Итак: стражник в этой ситуации все равно выбирает из 6 случаев, и он всё ещё не может раскрыть карты и сказать, кто же помилован. В случае 3 стражник не может сказать, что B помилован, поэтому он скажет, что C будет казнён (что будет правдой, ведь если помилован B, заключённые A и C будут казнены). Также и в случае 6, когда помилован C, но стражник, не имеющий права этого говорить, назовёт одного из тех, кто будет казнён — он назовёт заключённому А имя заключённого B. Это доводит вероятность случаев 4 и 5 до 1/3, что приводит нас к изначальным результатам.

В чём парадокс?

Люди думают, что вероятность 1/2, потому что они игнорируют суть вопроса, который заключённый A задаёт стражнику. Если бы стражник мог ответить на вопрос «Будет ли заключенный B казнен?», тогда в случае положительного ответа вероятность казни А действительно бы уменьшалась с 2/3 до 1/2.

То ограничение, которое есть в оригинальной задаче трёх узников, делает вопрос заключённого A бесполезным, ведь с вероятностью 100 % будут казнены два заключённых. То есть, даже если А помилован, ему назовут любое имя; если A приговорён к казни, то, значит, с ним вместе будет казнён ещё один заключённый, его имя и назовут заключённому А.

Получается, заключённый А своим вопросом просто узнаёт тот факт, что один из заключённых B и С будет казнён, что и так ясно из условий задачи.

См. также

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии