Случай равенства также называется тождеством Птолемея.
О доказательствах
Один из вариантов доказательства — применить инверсию относительно окружности с центром в точке и неравенство треугольника для образов точек , , .[1]
Другой вариант (близкий к доказательству самого Птолемея, приведённому им в книге Альмагест) — ввести точку такую, что , а потом через подобие треугольников.
Теорема Помпею.[2] Рассмотрим точку и правильный треугольник. Тогда из отрезков , и можно составить треугольник, причём этот треугольник вырожденный тогда и только тогда, когда точка лежит на описанной окружности треугольника .
Если AC — диаметр окружности, то теорема превращается в правило синуса суммы. Именно это следствие использовал Птолемей для составления таблицы синусов.
Неравенства Птолемея можно распространить и на шесть точек: если произвольные точки плоскости (это обобщение называют теоремой Птолемея для шестиугольника, а в зарубежной литературе теоремой Фурмана (Fuhrmann’s theorem)[3]), то
причем равенство достигается тогда и только тогда, когда — вписанный шестиугольник.
Теорема Кейси (обобщённая теорема Птолемея): Рассмотрим окружности и , касающиеся данной окружности в вершинах и выпуклого четырехугольника . Пусть — длина общей касательной к окружностям и (внешней, если оба касания внутренние или внешние одновременно, и внутренней, если одно касание внутреннее, а другое внешнее); и т. д. определяются аналогично. Тогда
.
Циклический граф, в котором все расстояния удовлетворяют неравенству Птолемея, называют графом Птолемея
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии