Многообразие Уайтхеда — определённый пример открытого трёхмерного многообразия, являющегося стягиваемым, но не гомеоморфным . Пример был найден Генри Уайтхедом в 1935 году при попытке решить гипотезу Пуанкаре.
В одномерном и двумерном случаях подобных примеров не существует.
Для построения в трёхмерной сфере выбирается незаузленное полноторие , далее — второе полноторие в так, что и трубчатая окрестность меридиана образуют утолщение зацепления Уайтхеда. При этом можно стянуть в дополнении меридиана и меридиан можно стянуть в дополнении .
Далее строится полноторие , вложенное в тем же способом, как и для ; это построение можно продолжить до бесконечности, получив последовательность вложенных полнотрий:
Континуум Уайтхеда определяется как пересечение построенных полнотрий:
Дополнение в трёхмерной сфере и есть многообразие Уайтхеда.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .