WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Первые три полнотория в построении

Многообразие Уайтхеда — определённый пример открытого трёхмерного многообразия, являющегося стягиваемым, но не гомеоморфным . Пример был найден Генри Уайтхедом в 1935 году при попытке решить гипотезу Пуанкаре.

В одномерном и двумерном случаях подобных примеров не существует.

Построение

зацепление Уайтхеда

Для построения в трёхмерной сфере выбирается незаузленное полноторие , далее — второе полноторие в так, что и трубчатая окрестность меридиана образуют утолщение зацепления Уайтхеда. При этом можно стянуть в дополнении меридиана и меридиан можно стянуть в дополнении .

Далее строится полноторие , вложенное в тем же способом, как и для ; это построение можно продолжить до бесконечности, получив последовательность вложенных полнотрий:

Континуум Уайтхеда определяется как пересечение построенных полнотрий:

.

Дополнение в трёхмерной сфере и есть многообразие Уайтхеда.

Свойства

  • Многообразие Уайтхеда, , не гомеоморфно , но произведение гомеоморфно .
  • Многообразие Уайтхеда содержит компактное множество такое, что для любого другого компактного множества дополнение не односвязно.

См. также

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии