Матрица кватернионов — это матрица, элементами которой являются кватернионы.
Кватернионы образуют некоммутативное кольцо и, таким образом, сложение и умножение матриц кватернионов могут быть определены так же, как и для матриц над любым другим кольцом.
Сложение. Сумма двух матриц кватернионов A и B определяется обычным способом как поэлементное сложение:
Умножение. Умножение двух кватернионных матриц A и B также следует обычному определению для матричного умножения. Для того чтобы оно было определено число столбцов матрицы A должно равняться числу столбцов матрицы B. Каждый элемент i-й строки и j-го столбца получаемой матрицы равен скалярному произведению i-й строки первой матрицы на j-й столбец второй матрицы:
Например, для матриц
the product is
Так как кватернионное умножение не коммутативно, необходимо позаботиться о сохранении порядка сомножителей при вычислении произведения матриц.
Единичным элементом, как и ожидается, будет диагональная матрица I = diag(1, 1, … , 1). Умножение следует обычным законам ассоциативности и дистрибутивности. След матрицы определяется как сумма её диагональных элементов, но в общем случае:
Левое скалярное произведение определяется как:
Снова, так как умножение не коммутативно, то необходимо побеспокоиться о порядке сомножителей.[1]
Не существует естественного способа определить детерминант для (квадратной) матрицы кватернионов так, чтобы его значения были кватернионами.[2] Тем не менее могут быть определены комплекснозначные детерминанты.[3] Кватернион a + bi + cj + dk можно представить как комплексную матрицу 2×2:
Так задаётся отображение из Ψmn из кватернионных матриц m на n в комплексные матрицы 2m by 2n посредством замены каждого кватерниона на его представление в виде квадратной матрицы 2 на 2. Комплекснозначный детерминант квадратной матрицы кватернионов A тогда можно определить как det(Ψ(A)). Много обычных правил для детерминантов остаётся верными, в частности n на n матрица обратима тогда и только тогда, когда её определитель отличен от нуля.
Матрицы кватернионов используются в квантовой механике[4] и при рассмотрении задачи многих тел.[5]
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .