Критерий Граббса — статистический тест, используемый для определения выбросов в одномерном наборе данных, подчиняющихся нормальному закону распределения. Был предложен в 1950 году Франком Граббсом[1].
Критерий Граббса основан на предположении о нормальном распределении. Таким образом, перед расчётом критерия Граббса необходимо проверить данные на нормальное распределение[2].
Критерий Граббса определяет один выброс за одну итерацию. Этот выброс исключается из набора данных и тест повторяется до тех пор, пока не будут обнаружены все выбросы. Тем не менее, множественные итерации изменяют вероятность определения и критерий не следует применять при 6 или менее значениях, так как в такой ситуации часто большинство точек оказываются идентифицированы как выбросы.
Критерий Граббса определён для гипотез:
Критерий Граббса рассчитывается как:
где and означают выборочное среднее и среднеквадратичное отклонение соответственно. Значение критерия Граббса показывает максимальное абсолютное отклонение от выборочного среднего в единицах среднеквадратичного отклонения.
Этот способ расчёта относится к двусторонней версии теста. Критерий Граббса также может быть определён как односторонний тест. Для определения того, является ли минимальное значение выбросом, рассчитывается критерий:
где Ymin означает минимальное значение. Для определения того, является ли максимальное значение выбросом, рассчитывается критерий:
где Ymax означает максимальное значение.
Для двустороннего теста гипотеза об отсутствии вылетом отклоняется с уровнем значимости α, если:
где tα/(2N),N−2 означает максимальное критическое значение распределения Стьюдента с N − 2 степенями свободы и уровнем значимости α/(2N). Для одностороннего расчёта,α/(2N) следует заменить на α/N.
Некоторые статистические графики могут и должны использоваться для определения вылетов. Простой график выполняемой последовательности, диаграмма размаха или гистограмма отображают очевидные выбросы. График нормального распределения также может быть полезен.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .