Криптосистема Мэсси — Омуры была предложена в 1978 году Джеймсом Мэсси и Джимом К. Омурой изначально в качестве улучшения протокола Шамира. Имеется два варианта реализации данного протокола: классический и эллиптический. Первый построен на сложности задачи дискретного логарифмирования, второй на свойствах эллиптической кривой. Обычно сгенерированное в результате сообщение используется в качестве ключа традиционной криптосистемы.
Изначально протокол Мэсси-Омуры был описан применительно к мультипликативной группе , где — простое число, и представлял собой аналог передачи секрета с помощью запираемых на один или два замка ящиков. Суть схемы заключается в следующем: абонент Alice запирает ящик с письмом своим ключом и пересылает ящик абоненту Bob. Абонент Bob, в свою очередь, запирает его своим ключом, и отправляет обратно к Alice. Alice снимает свой замок и направляет ящик к Bob, который снимает свой замок.
Пары чисел , являются секретными ключами абонентов.
(Первый сомножитель равен 1 по теореме Эйлера). Аналогично .
Alice шифрует своё сообщение первым ключом: ( ) и пересылает абоненту Bob.
Итого: абоненту Bob доставлено секретное сообщение от Аlice.
Данный вариант системы может быть реализован и без использования процедуры возведения в степень в конечных полях, но задача дискретного логарифмирования достаточно сложна для Bob, чтобы тот по не смог определить ключ и впредь читать сообщения, ему не предназначавшиеся. Обязательным условием надежности является хорошая система подписи сообщений. Без использования подписей любое постороннее лицо Eva может представиться абонентом Bob и вернуть Alice сообщение вида . Alice продолжит процедуру и, «сняв свой замок», откроет самозванцу Eva путь к расшифрованию сообщения. В связи с этим, должно сопровождаться аутентификацией.
Эллиптический вариант данного протокола предоставляет возможность передавать сообщение от Alice к Bob по открытому каналу без предварительной передачи какой-либо ключевой информации. Системные параметры здесь: уравнение эллиптической кривой и поле , задающееся неприводимым многочленом. Пусть порядок эллиптической кривой равен , — целое число, взаимно простое с ( ). По алгоритму Евклида можно найти
По определению сравнимости по модулю:
Значит для любой точки эллиптической кривой порядка выполняется:
Теперь, используя и и любую точку эллиптической кривой, можно вычислить
Где . Вычисление точки по эквивалентно решению задачи дискретного логарифма для эллиптической кривой.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .