WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Дерево с кодом Прюфера (4,4,4,5).

Код Прюфера однозначно сопоставляет произвольному конечному дереву последовательность: дереву с вершинами сопоставляется последовательность из чисел от до с возможными повторениями. Код может быть получен применением простого итерационного алгоритма; также есть алгоритм, восстанавливающий дерево по его коду Прюфера.

Код Прюфера был использован Хайнцем Прюфером при доказательстве формулы Кэли в 1918 году.[1]

Построение

Пусть есть дерево с вершинами, занумерованными числами . Построение кода Прюфера дерева T ведётся путем последовательного удаления вершин из дерева, пока не останутся только две вершины. При этом каждый раз выбирается концевая вершина с наименьшим номером и в код записывается номер единственной вершины, с которой она соединена. В результате получаем последовательность , составленную из чисел , возможно с повторениями.

Пример


Для дерева на диаграмме вершина 1 является концевой вершиной с наименьшим номером, поэтому она удаляется и 4 ставится в код Прюфера.

Вершины 2 и 3 удаляются в следующем, так что 4 добавляется в два раза.

Вершина 4 сейчас теперь стала концевой и имеет наименьший номер, поэтому её удаляем и мы добавляем 5 к последовательности.

Мы остались только с двумя вершинами, поэтому мы останавливаемся.

В результате код Прюфера (4,4,4,5).

Восстановление дерева

Для восстановления дерева по коду , заготовим список номеров вершин . Выберем первый номер , который не встречается в коде. Добавим ребро , после этого удалим из и из .

Повторяем процесс до момента, когда код становится пустым. В этот момент список содержит ровно два числа и . Остаётся добавить ребро , и дерево построено.


Свойства

  • Если — это степень вершины с номером , то встречается в коде Прюфера раз.

Приложения

  • Из кода Прюфера следует Формула Кэли, то есть число остовных деревьев полного графа с вершинами равно . Доказательство следует из того, что код Прюфера даёт биекцию между остовными деревьями и последовательностями длины из чисел.
    • Код Прюфера также позволяет обобщить формулу Кэли на случай, если даны степени вершин, если это последовательность степеней дерева, то число деревьев с такими степенями равно мультиноминальному коэффициенту
  • Код Прюфера используется для построений случайных деревьев.

Ссылки

  1. Prüfer, H. (1918). “Neuer Beweis eines Satzes über Permutationen”. Arch. Math. Phys. 27: 742—744. Параметры |author= и |last= дублируют друг друга (справка)

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии