Квазиизометрия — обобщение понятия изометрии на метрических пространствах, игнорирующая конечные отклонения, как абсолютные, так и относительные. Это понятие особенно важно в геометрической теории групп. Введено Михаилом Громовым.
Отображение (не обязательно непрерывное) отображение из одного метрического пространства в другое называется квазиизометрией если существуют константы , и такие, что следующие два свойства выполнены:
Пусть конечное порождающее множество группы . Рассмотрим соответствующий граф Кэли. Этот граф превращается в метрическое пространство, если мы заявляем, что длина каждого ребра равен 1.
Для другого порождающего множества эт конструкция даёт другое другое метрическое пространство, однако два полученных пространства квазиизометричны.[1] Такимобразом квазиизометрический класс этого пространства, является инвариантом группы . То есть, не зависит от выбора порождающего множества.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .