WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Интеграл Джексона в теории специальных функций отражает операцию, обратную q-дифференцированию.

Интеграл Джексона ввёл Франк Хилтон Джексон.

Определение

Пусть f(x) — функция от вещественной переменной x. Интеграл Джексона для f определяется как следующий ряд:

В случае, если g(x) является другой функцией и Dqg означает её q-производную, формально её можно записать:

или:

В результате получается q-аналог интеграла Римана — Стилтьеса.

Интеграл Джексона как q-первообразная

Как обычная первообразная непрерывного отображения может быть представлена римановым интегралом, так и интеграл Джексона даёт единственную q-первообразную для некоторого класса функций (см. статьи Кемпфа и Маджида[1]).

Теорема

Если предположить, что и если значение ограничено на интервале для некоторого то интеграл Джексона сходится к функции на , которая является q-первообразной функции . Более того, непрерывна на с и является первообразной функции в этом классе функций[2].

Примечания

  1. Kempf, Majid, 1994, с. 6802.
  2. Kac, Cheung, 2002, с. Theorem 19.1.

Литература

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии