Индекс особой точки векторного поля — математическое понятие, относящееся к дифференциальной топологии, дифференциальной геометрии, теории динамических систем и теории дифференциальных уравнений. Является топологической характеристикой изолированной особой точки векторного поля и определяется как степень гауссова отображения в данной точке.
Пусть векторное поле задано в окрестности точки , являющейся изолированной особой точкой этого поля, то есть и при этом при всех из достаточно малой окрестности точки . Индексом особой точки (обозначается ) называется степень гауссова отображения -мерной сферы с центром достаточно малого радиуса , выбранной так, что поле на ней не обращается в нуль, в сферу . Именно, гауссово отображение определено по формуле:
Особая точка векторного поля называется невырожденной, если в ней выполнено условие
Невырожденная особая точка всегда является изолированной, и её индекс равен знаку определителя .
Собственные значения
приведённой выше матрицы (матрицы линейной части поля в данной точке) называются корнями невырожденной особой точки. Для градиентных полей
индекс невырожденный особой точки совпадает со знаком гессиана:
где — количество отрицательных квадратов в каноническом представлении квадратичной формы .
В двумерном евклидовом пространстве индекс невырожденных особых точек, образующих центр (все корни — мнимые), узел (все корни — вещественные одного знака), фокус (корни комплексно сопряжены) — равен , для седловых точек (вещественные корни разных знаков) — индекс равен .
Для улучшения этой статьи по математике желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .