Диофантово число[1] — иррациональное число , при приближении которого рациональным числом ошибка составляет не менее некоторой степени знаменателя:
В противном случае, число называют лиувиллевым.
По теореме Лиувилля о приближении алгебраических чисел, всякое алгебраическое иррациональное число является диофантовым. В частности, тем самым, любое лиувиллево число трансцендентно, что позволяет явно строить трансцендентные числа как суммы сверхбыстро сходящихся рядов рациональных чисел.
Диофантовы числа метрически типичны: их множество имеет полную меру Лебега. Лиувиллевы числа, напротив, типичны с топологической точки зрения: их множество остаточно.
Мера иррациональности чисел Лиувилля: , кроме того, если мера иррациональности числа бесконечна, то оно лиувиллево (иногда это свойство принимается за определение чисел Лиувилля).
Классический пример лиувиллева числа — постоянная Лиувилля, определяемая как:
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .