Граф Дика | |
---|---|
![]() | |
Вершин | 32 |
Рёбер | 48 |
Радиус | 5 |
Диаметр | 5 |
Обхват | 6 |
Автоморфизмы | 192 |
Хроматическое число | 2 |
Хроматический индекс | 3 |
Свойства |
гамильтонов двудольный Граф Кэли |
Граф Дика — это 3-регулярный граф с 32 вершинами и 48 рёбрами, назван в честь Вальтера фон Дика[1] [2].
Граф является гамильтоновым графом с 120 различными гамильтоновыми циклами. Его хроматическое число равно 2, хроматический индекс равен 3, его радиус равен 5, диаметр равен 5 и обхват равен 6. Он является также 3-вершинно-связным и 3-рёберно-связным.
Граф Дика является тороидальным, и двойственный граф его тороидального вложения — это граф Шрикханде, строго регулярный симметричный гамильтонов граф.
Группа автоморфизмов графа Дика — это группа порядка 192[3]. Она действует транзитивно на вершины и рёбра графа. Таким образом, граф Дика является симметричным. Он имеет автоморфизмы, которые переводят любую вершину в любую другую вершину и любое ребро в любое другое ребро. В списке Фостера граф Дика, обозначенный как F32A, является единственным кубическим симметричным графом с 32 вершинами[4].
Характеристический многочлен графа Дика равен .
Граф Дика является остовом[en] симметричного паркета[en] поверхности третьего рода из двенадцати восьмиугольников, известного как карта Дика или Паркет Дика. Двойственный граф этого паркета является полным трёхдольным графом K4,4,4[5][6].
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .