WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Граф F26A
Вершин 26
Рёбер 39
Радиус 5
Диаметр 5
Обхват 6
Автоморфизмы 78   (C13⋊C6)
Хроматическое число 2
Хроматический индекс 3
Свойства граф Кэли
гамильтонов
симметричный
кубический [1]
Обозначение Ln


В теории графов граф F26Aсимметричный двудольный кубический граф с 26 вершинами и 39 рёбрами.[1]

Хроматическое число графа равно 2, хроматический индекс равен 3, диаметр и радиус равны 5, а обхват равен 6[2]. Граф является вершинно 3-связным и рёберно 3-связным.

Граф F26A является гамильтоновым и может быть описан в LCF-нотации как [7, 7]13.

Алгебраические свойства

Группа автоморфизмов графа F26A является группой с порядком 78[3]. Группа действует транзитивно на вершинах, на рёбрах и на дугах графа, поэтому граф F26A является симметричным (хотя он не является дистанционно-транзитивным). Граф имеет автоморфизмы, которые переводят любую вершину в любую другую вершину и любое ребро в любое другое ребро. Согласно списку Фостера граф F26A является единственным кубическим симметричным графом с 26 вершинами[2]. Граф является также графом Кэли для диэдральной группы D26, генерируемой a, ab и ab4, где [4]

Граф F26A является наименьшим кубическим графом, в котором группа авторморфизмов действует регулярно на дуги (то есть на рёбра, которым приписаны направления)[5].

Характеристический многочлен графа F26A равен

Другие свойства

Граф F26A можно вложить в виде хиральной правильной карты[en] в тор с 13 шестиугольными гранями.

Галерея

Примечания

  1. 1 2 Weisstein, Eric W. Cubic Symmetric Graph (англ.) на сайте Wolfram MathWorld.
  2. 1 2 Conder, Dobcsányi, 2002, с. 41-63.
  3. Royle, G. F026A data
  4. Yan-Quan Feng and Jin Ho Kwak, Cubic s-Regular Graphs, p. 67. Архивировано 26 августа 2006 года.
  5. Feng, Kwak, 2004, с. 345-356.

Литература

  • M. Conder, P. Dobcsányi. Trivalent Symmetric Graphs Up to 768 Vertices // J. Combin. Math. Combin. Comput.. — 2002. Вып. 40,. С. 41-63.
  • Yan-Quan Feng, Jin Ho Kwak. One-regular cubic graphs of order a small number times a prime or a prime square // J. Aust. Math. Soc.. — 2004. Вып. 76. С. 345-356.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии