Вариация функционала, или первая вариация функционала, — обобщение понятия дифференциала функции одной переменной, главная линейная часть приращения функционала вдоль определенного направления. Понятие используется в теории экстремальных задач для получения необходимых и достаточных условий экстремума. Именно такой смысл вкладывается в этот термин, начиная с работы 1762 года Ж. Лагранжа[1]. Ж. Лагранж рассматривал по преимуществу функционалы классического вариационного исчисления (действие) вида:
Рассмотрим изменение функционала (*) от одной точки функционального пространства к другой (от одной функции к другой). Для этого сделаем замену и подставим в выражение (*). При допущении о непрерывной дифференцируемости имеет место равенство, аналогичное выражению для дифференциала функции:
где остаточный член — расстояние между функциями и , а . При этом линейный функционал называется (первой) вариацией функционала и обозначают через .
Применительно к функционалу (*) для первой вариации имеет место равенство с точностью до величины порядка высшего, чем :
где
- обобщённый импульс.
При этом , поскольку
Равенство нулю первой вариации для всех является необходимым условием экстремума функционала . Для функционала (*) из этого необходимого условия и основной леммы вариационного исчисления следует уравнение Эйлера:
Аналогичным образом определяются вариации более высоких порядков.
Общее определение первой вариации в бесконечномерном анализе было дано французским математиком Рене Гато в 1913 году. По сути своей определение Гато тождественно с определением Лагранжа[2].
Первая вариация функционала является однородным, но не обязательно линейным функционалом, вариация функционала при дополнительном предположении о линейности и непрерывности (по ) выражения обычно называется производной Гато. В современной математике термины «вариация Гато», «производная Гато», «дифференциал Гато» более употребимы, чем вариация функционала[3]. При этом термин «вариация функционала» сохраняется лишь для функционалов классического вариационного исчисления.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .