В этой статье не хватает ссылок на источники информации. |
Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. |
Биологические сети — это любые сети являющиеся частью биологических систем. Сеть — это любая система с подразделениями, которые связаны в единое целое, например единичные виды, связанные в единую пищевую сеть.Биологические сети обеспечивают математическое представление связей, обнаруженных в результате экологических, эволюционных и физиологических исследований, таких как нейронные сети[1]. Анализ биологических сетей в отношении заболеваний человека привел к появлению такой области как сетевой медицины[2][3].
Сложные биологические системы могут быть представлены и проанализированы как вычислимые сети. Например, экосистемы могут быть смоделированы как сети взаимодействующих видов, или белок может быть смоделирован как сеть аминокислот. Если расщеплять белок дальше, аминокислоты могут быть представлены в виде сети связанных атомов, таких как углерод, азот и кислород. Вершины и ребра являются основными компонентами сети. Узлы представляют собой единицы в сети, в то время как ребра являются взаимодействием между единицами. Узлы могут представлять широкий спектр биологических единиц, от отдельных организмов до отдельных нейронов в мозге. Два важных свойства сети — степень и центральность графа. Степень (или связность, отличная от той, которая используется в в теории графов) — это число ребер, соединяющих узел, а центральность — мера того, насколько центральным является узел в сети[4]. Узлы с высокой степенью межсетевого взаимодействия по существу служат мостами между различными частями сети (то есть взаимодействия должны проходить через этот узел, чтобы достигать другие части сети). В социальных сетях узлы с высокой степенью или высокой степенью централизованности могут играть важную роль в общей структуре сети. Ещё в 1980-х годах исследователи начали рассматривать ДНК и геномы как динамическое хранилище языковой системы с точными вычислимыми конечными состояниями представленными в виде [Конечного автомата[5]. Недавние исследования сложных систем также показали некоторую далеко идущую общность в организации информации по проблемам из биологии, информатики и физики, такие как Конденсат Бозе — Эйнштейна (особое состояние вещества)[6].
Биоинформатика все больше смещает акцент с отдельных генов, белков и алгоритмов поиска на крупномасштабные сети, часто обозначаемые как омы такие как биомы, интерактомы, геномы и протеомы. Такие теоретические исследования показали, что биологические сети имеют много общих черт с другими сетями, такими как интернет или социальные сети, к примеру их сетевая топология .
Множество белок-белковые взаимодействий (PPI) в клетке образуют сети взаимодействия белков (PIN), где белки являются узлами, а их взаимодействия — ребрами[7].PIN являются наиболее тщательно проанализированными сетями в биологии. Существуют десятки методов обнаружения ИПП для выявления таких взаимодействий. Двугибридный анализ является широко используемой экспериментальной техникой для изучения бинарных взаимодействий[8].
Недавние исследования показали сохранение молекулярных сетей в течение долгой эволюции[9].Более того, было обнаружено, что белки с высокой степенью связности более важны для выживания, чем белки с меньшей степенью[10]. Это говорит о том, что общий состав сети (а не просто взаимодействие между белковыми парами) важен для общего функционирования организма.
Активность генов регулируется факторами транскрипции — белками, которые обычно связываются с ДНК. Большинство факторов транскрипции связываются с несколькими участками связывания в геном. В результате все клетки имеют сложные генные регуляторные сети. К примеру, человеческий геном кодирует порядка 1400 ДНК-связывающих транскрипционных факторов, которые регулируют экспрессию более 20000 человеческих генов[11]. Технологии изучения генно-регуляторных сетей включают в себя ChIP-chip, ChIP-seq, CliP-seq и другие.
Сети генной коэкспрессии можно интерпретировать как сети ассоциаций между переменными, которые измеряют содержание транскриптов. Эти сети были использованы для обеспечения системного биологического анализа данных микроматрицы ДНК, данных RNA-seq, данных miRNA и т. д. . Анализ взвешенных сетей коэкспрессии генов широко используется для идентификации модулей коэкспрессии и внутримодульных генов-концентраторов. Модули коэкспрессии могут соответствовать типам клеток или путям. Высокосвязанные внутримодульные концентраторы можно интерпретировать как представителей их соответствующих модулей.
Химические соединения живой клетки связаны биохимическими реакциями, которые превращают одно соединение в другое. Реакции катализируются ферментами. Таким образом, все соединения в клетке являются частями сложной биохимической сети реакций, которая называется метаболическая сеть. Можно использовать сетевой анализ, чтобы определить, как отбор влияет на метаболические пути[4].
Сигналы передаются внутри сот или между сотами и, таким образом, образуют сложные сигнальные сети. Например, в Сигнальный путь ERK путь от поверхности клетки к ядру клетки передается серией межбелковых взаимодействий, реакций фосфорилирования и других событий. Сигнальные сети обычно объединяют интерактомы, генная регуляторная сети и метаболические сети.
Сложные взаимодействия в мозге делают его идеальным кандидатом для применения теории сетей. Нейроны в мозге тесно связаны друг с другом, и это приводит к тому, что сложные структуры присутствуют в структурных и функциональных аспектах мозга[12]. К примеру, свойства маленького мира были продемонстрированы в связях между кортикальными областями мозга приматов[13] или во время глотания у людей[14]. Это говорит о том, что кортикальные области мозга не взаимодействуют напрямую друг с другом, но большинство областей могут быть достигнуты от всех других посредством всего лишь нескольких взаимодействий.
Все организмы связаны друг с другом через пищевые взаимодействия. То есть, если вид ест или съедается другим видом, они связаны в сложную пищевую сеть взаимодействий хищников и жертв. Стабильность этих взаимодействий была давним вопросом в экологии[15]. То есть, если некоторые члены сети удаляются, что происходит с сетью (то есть она разваливается или адаптируется)? Сетевой анализ может использоваться для изучения стабильности пищевой сети и определения того, приводят ли определённые свойства сети к более стабильным сетям. Кроме того, сетевой анализ может быть использован для определения того, как выборочное удаление видов повлияет на пищевую сеть в целом[16]. Это особенно важно, учитывая потенциальную потерю видов из-за глобального изменения климата.
Основная статья: социальные отношения В биологии парные взаимодействия исторически были в центре интенсивных исследований. Благодаря последним достижениям в области сетевых наук, стало возможным расширить парные взаимодействия, включив в них особей многих видов, участвующих во множестве взаимодействий, чтобы понять структуру и функцию более фундаментальных сетевых наук[17]. Использование анализа социальных сетей может позволить как обнаружить, так и понять, как эти сложные взаимодействия связаны между собой в сети системы, ранее мало понятная связь . Этот мощный инструмент позволяет изучать различные типы взаимодействий(от конкурентности до кооперации) используя одну и ту же общую структуру[18]. К примеру, взаимодействие растений и насекомых-опылителей являются взаимовыгодными и часто включают в себя много разных видов опылителей, а также много разных видов растений. Эти взаимодействия имеют решающее значение для воспроизводства растений и, следовательно, для накопления ресурсов в основе пищевой цепи для первичных потребителей, однако этим сетям взаимодействия угрожают антропогенные факторы. Использование сетевого анализа может пролить свет на работу сетей опыления и, в свою очередь, может послужить основой для усилий по сохранению[19].Внутри сетей опыления гнездимость (то есть специалисты взаимодействуют с подмножеством видов, с которыми общаются универсалы), избыточность (то есть большинство растений опыляются многими опылителями) и модульность играют большую роль в стабильности сети[19][20]. Эти свойства сети можно задействовать, чтобы замедлить распространение эффектов возмущения через систему и потенциально отчасти защитить буферную сеть от антропогенных изменений[20]. В более общем плане, структура взаимодействия видов в экологической сети может рассказать нам о разнообразии, богатстве и надежности сети[21]. Исследователи могут даже сравнить текущие конструкции сетей взаимодействия видов с историческими реконструкциями древних сетей, чтобы определить, как сети менялись с течением времени[22]. Недавние исследования в этих сетях взаимодействия сложных видов связаны с пониманием того, какие факторы (например, разнообразие) приводят к стабильности сети[23].
Сетевой анализ дает возможность количественно определить связи между индивидами, что позволяет вывести подробности о сети в целом на уровне видов и / или популяций[24].Исследователи, интересующиеся поведением животных во множестве таксонов, от насекомых до приматов, начинают включать сетевой анализ в свои исследования. Исследователи, интересующиеся социальными насекомыми (например, муравьями и пчелами), использовали сетевой анализ, чтобы лучше понять разделение труда, распределение задач и оптимизацию поиска пищи в колониях[25][26][27];Другие исследователи заинтересованы в том, как определённые свойства сети на уровне группы и / или населения можно объяснить поведение на индивидуальном уровне. Например, исследование манакинов с проволочными хвостами (маленькая птица семейства воробьиных) показало, что значение самца в сети в значительной степени повышает способность самца восходить в социальной иерархии (то есть в конечном итоге получить территорию и самку)[28]. В группах афалинов индивидуальное значение центральность графа и межличностного отношения могут предсказать, будет ли этот индивид демонстрировать определённое поведение, например, использование бокового шлепания и переворачивания вверх для руководства групповыми путешествиями; индивиды с высокими значениями межличностных отношений более связаны и могут получить больше информации, и, следовательно, лучше подходят для групповых путешествий и, следовательно, имеют тенденцию демонстрировать такое сигнальное поведение больше, чем другие члены группы[29].
Сетевой анализ также можно использовать для описания социальной организации вида в целом, что часто выявляет важные ближайшие механизмы, способствующие использованию определённых поведенческих стратегий. Эти описания часто связаны с экологическими свойствами (например, распределение ресурсов). Например, сетевой анализ выявил тонкие различия в групповой динамике двух родственных видов в сливающееся-делящееся сообществе - зебр Греви и куланов; Зебры Греви показывают четкие предпочтения в выборе ассоциаций, когда делятся на более мелкие группы, в то время как куланы — нет[30]. Аналогичным образом, исследователи, интересующиеся приматами, также использовали сетевой анализ для сравнения социальных организаций по разным порядкам приматов, предполагая, что использование сетевых показателей (таких как централизованность, склонность к группировке) может быть полезным с точки зрения объяснения типов социального поведения. мы видим внутри определённых групп, а не других[31].
Наконец, анализ социальных сетей может также выявить важные колебания в поведении животных в изменяющейся среде. Например, сетевой анализ самок медвежьих павианов (Papio hamadryas ursinus) выявил важные динамические изменения в разные сезоны, которые ранее были неизвестны; вместо того, чтобы создавать стабильные, долговременные социальные связи с друзьями, было обнаружено, что у павианов наблюдаются более изменчивые отношения, которые зависят от краткосрочных непредвиденных обстоятельств, связанных с динамикой на уровне группы, а также изменчивостью окружающей среды[32]. Изменения в среде социальной сети человека также могут влиять на такие характеристики, как «личность»: например, общительные пауки, которые толкаются с более смелыми соседями, имеют тенденцию к увеличению и смелости[33]. Это очень небольшой набор общих примеров того, как исследователи могут использовать сетевой анализ для изучения поведения животных. Исследования в этой области в настоящее время расширяются очень быстро. Анализ социальных сетей является ценным инструментом для изучения поведения животных по всем видам животных и может раскрыть новую информацию о поведении животных и социальной экологии, которая ранее была плохо изучена.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .