Пусть каждое из множеств непусто. Аксиома счётного выбора утверждает, что можно взять по одному элементу из каждого множества и выстроить их в последовательность
Аксиома счётного выбора — аксиома теории множеств, обычно обозначаемая Аксиома утверждает, что для любого счётного семейства непустых множеств существует «функция выбора», извлекающая из каждого множества один и только один его элемент. Другими словами, для последовательности непустых множеств можно построить последовательность их представителей при этом множества могут быть бесконечными и даже несчётными[1].
Место аксиомы в математике
Аксиома счётного выбора представляет собой ограниченный вариант полной аксиомы выбора (), в отличие от последней она утверждает существование функции выбора только для счётного семейства множеств. Как доказал Пол Коэн, аксиома счётного выбора независима от других аксиом теории множеств (без аксиомы выбора)[2]. В отличие от полной аксиомы выбора, аксиома счётного выбора не приводит к парадоксу удвоения шара или иным противоречащим интуиции следствиям.
Аксиома счётного выбора достаточна для обоснования основных теорем анализа. Из неё следует, в частности[3]:
для любой предельной точки существует сходящаяся к ней последовательность;
всякое бесконечное множество содержит счётное подмножество.
Однако значительная часть утверждений теории множеств не может быть доказана с помощью аксиомы счётного выбора. Например, чтобы доказать, что каждое множество может быть вполне упорядочено, требуется полная аксиома выбора.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии