110-вершинный граф Иванова — Иофиновой | |
---|---|
Вершин | 110 |
Рёбер | 165 |
Радиус | 7 |
Диаметр | 7 |
Обхват | 10 |
Автоморфизмы | 1320 (PGL2(11)) |
Хроматическое число | 2 |
Хроматический индекс | 3 |
Свойства |
Полусимметричный Двудольный Кубический Гамильтонов |
110-вершинный граф Иванова — Иофиновой — это полусимметричный кубический граф с 110 вершинами и 165 рёбрами.
Иванов и Иофинова доказали в 1985 году существование пяти и только пяти полусимметричных кубических двудольных графов, группы автоморфизмов которых действуют примитивно[en] на каждой доле двудольного графа[1]. Наименьший такой граф имеет 110 вершин. Остальные четыре имеют 126, 182, 506 и 990 вершин[2]. 126-вершинный граф Иванова — Иофиновой известен также как 12-клетка Тата.
Диаметр 110-вершинного графа Иванова — Иофиновой, наибольшее расстояние между любой парой вершин, равен 7. Радиус его равен также 7. Его обхват равен 10.
Граф 3-связен и рёберно 3-связен — чтобы сделать его несвязным нужно удалить по меньшей мере три ребра или три вершины.
Хроматическое число 110-вершинного графа Иванова — Иофиновой равно 2 — его вершины можно раскрасить в два цвета так, что никакие две вершины одного цвета не соединяются ребром. Его хроматический индекс равен 3 — рёбра графа можно выкрасить в 3 цвета так, что никакие два ребра одного цвета не сходятся в одной вершине.
Характеристический многочлен графа равен . Группа симметрии является проективной группой PGL2(11) с 1320 элементами[3].
Немногие графы показывают полусимметрию — большинство рёберно-транзитивных графов также и вершинно-транзитивны. Самым маленьким полусимметричным графом является граф Фолкмана с 20 вершинами, который является 4-регулярным. Три наименьших кубических полусимметричных графа — это граф Грея с 54 вершинами, этот наименьший из графов Иванова — Иофиновой с 110 вершинами и граф Любляны с 112 вершинами[4][5].
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .