Эллиптический фильтр (Фильтр Кауэра) — электронный фильтр, характерной особенностью которого являются пульсации амплитудно-частотной характеристики как в полосе пропускания, так и полосе подавления. Величина пульсаций в каждой из полос независима друг от друга. Другой отличительной особенностью такого фильтра является очень крутой спад амплитудной характеристики, поэтому с помощью этого фильтра можно достигать более эффективного разделения частот, чем с помощью других линейных фильтров.
Если пульсации в полосе подавления равны нулю, то эллиптический фильтр становится фильтром Чебышёва I рода. Если пульсации равны нулю в полосе пропускания, то фильтр становится фильтром Чебышёва II рода. Если же пульсации отсутствуют на всей амплитудной характеристике, то фильтр становится фильтром Баттерворта.
Значение показателя пульсаций определяет пульсации в полосе пропускания, пульсации же в полосе подавления зависят как от показателя пульсаций, так и от показателя селективности.
Свойства
АЧХ эллиптического фильтра низких частот четвёртого порядка с ε=0,5 и ξ=1,05. Также показано минимальное усиление в полосе пропускания, максимальное усиление в полосе подавления и переходная зона между частотами (нормированными) 1 и ξ Переходная зона (увеличено).
В полосе пропускания эллиптическая функция меняет значения от нуля до единицы. АЧХ в полосе пропускания, таким образом, варьирует от единицы до .
В полосе подавления эллиптическая функция меняет значения от бесконечности до значения , которое определяется как:
АЧХ в полосе подавления, таким образом, меняет значения от нуля до .
Предельный случай превращает эллиптическую функцию в многочлен Чебышёва, и, таким образом, эллиптический фильтр становится фильтром Чебышёва I рода с показателем пульсаций ε.
Так как фильтр Баттерворта является предельным случаем фильтра Чебышёва, то при выполнении условий , и так что эллиптический фильтр становится фильтром Баттерворта.
Логарифм модуля АЧХ эллиптического фильтра 8 порядка на плоскости комплексной частоты (s=σ+jω) с ε=0,5, ξ=1,05 и . Белые пятна — полюса, тёмные — нули. Всего на графике 16 полюсов и 8 нулей второго порядка. На графике чёрный цвет соответствует усилению менее 0,0001, а белый — усилению более 10.Переходная зона фильтра (увеличено).
Нули модуля АЧХ совпадают с полюсами дробно-рациональной эллиптической функции.
Полюса эллиптического фильтра могут быть определены так же, как и полюса фильтра Чебышёва I рода. Для простоты примем частоту среза равной единице. Полюса эллиптического фильтра будут нулями знаменателя амплитудной характеристики. Используя комплексную частоту получим:
где значения обратной cd-функции сделаны явными при помощи целого индекса m.
Полюса эллиптической функции в таком случае:
Как и в случае многочленов Чебышёва, это можно выразить в явной комплексной форме
[1]
где — функция от , а и — нули эллиптической функции. Функция определена для всех n в смысле эллиптической функции Якоби. Для порядков 1 и 2 имеем
где
Рекурсивные свойства эллиптических функций можно использовать для построения выражений более высокого порядка для :
где
Эллиптические фильтры с минимальной добротностью
Нормированные добротности для полюсов эллиптического фильтра восьмого порядка с ξ=1,1 как функции показателя пульсаций ε. Каждая кривая представляет четыре полюса, так как комплексно сопряжённые и противоположные по знаку пары полюсов имеют одинаковую добротность. Добротность всех полюсов имеет минимум при εQmin=1/√Ln=0,02323…
См.[2]
Эллиптические фильтры обычно определяются путём задания определённой величины пульсаций в полосе пропускания, полосе подавления и крутизной амплитудной характеристики. Эти характеристики являются определяющими для задания минимального порядка фильтра. Другой подход к проектирования эллиптического фильтра заключается в определении чувствительности амплитудной характеристики аналогового фильтра к значениям его электронных компонент. Эта чувствительность обратно пропорциональна специальному показателю (добротности) полюсов передаточной функции фильтра. Добротностью полюса определяется как:
и является мерой влияния данного полюса на общую амплитудную характеристику. Для эллиптического фильтра заданного порядка существует связь между показателем пульсаций и фактором селективности, который минимизирует добротность всех полюсов передаточной функции:
Это приводит к существованию фильтра, наименее чувствительного к изменению параметров компонент фильтра, однако при таком способе проектирования теряется возможность независимо назначать величину пульсаций в полосе пропускания и полосе подавления. Для таких фильтров при увеличении порядка пульсации как в полосе подавления, так и в полосе пропускания уменьшаются, а крутизна характеристики вокруг частоты среза увеличивается. При расчёте фильтра с минимальной добротностью необходимо учитывать, что порядок такого фильтра будет больше, чем при обычном методе расчёта. График модуля амплитудной характеристики будет выглядеть практически так же, как и раньше, однако полюса будут располагаться не по эллипсу, а по кругу, причём в отличие от фильтра Баттерворта, полюса которого также располагаются по кругу, расстояние между ними будет неодинаковым, а на мнимой оси будут располагаться нули.
Сравнение с другими линейными фильтрами
Ниже представлены графики амплитудно-частотных характеристик некоторых наиболее распространённых линейных электронных фильтров с одинаковым количеством коэффициентов:
Как следует из графика, эллиптический фильтр имеет наибольшую крутизну характеристики, однако он также обладает и значительными пульсациями как в полосе пропускания, так и в полосе подавления.
Britton C. Rorabaugh.Approximation Methods for Electronic Filter Design.— New York: McGraw-Hill, 1999.— ISBN 0-07-054004-7.
B. Widrow, S.D. Stearns.Adaptive Signal Processing.— Paramus, NJ: Prentice-Hall, 1985.— ISBN 0-13-004029-0.
S. Haykin.Adaptive Filter Theory.— 4rd Edition.— Paramus, NJ: Prentice-Hall, 2001.— ISBN 0-13-090126-1.
Michael L. Honig, David G. Messerschmitt.Adaptive Filters — Structures, Algorithms, and Applications.— Hingham, MA: Kluwer Academic Publishers, 1984.— ISBN 0-89838-163-0.
J.D. Markel, A.H. Gray, Jr.Linear Prediction of Speech.— New York: Springer-Verlag, 1982.— ISBN 0-387-07563-1.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии