WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Точный тест Фишера — тест статистической значимости, используемый в анализе таблиц сопряжённости для выборок маленьких размеров. Назван именем своего изобретателя Р. Фишера. Относится к точным тестам значимости, поскольку не использует приближения большой выборки (асимптотики при размере выборки стремящемся к бесконечности). На создание этого теста Фишера побудило высказывание Муриэль Бристоль, которая утверждала, будто была в состоянии обнаружить, в какой последовательности чай и молоко были налиты в её чашку.

Назначение

Тест обычно используется, чтобы исследовать значимость взаимосвязи между двумя переменными в факторной таблице размерности (таблице сопряжённости признаков). Величина вероятности теста вычисляется, как если бы значения на границах таблицы известны. Например, в случае с дегустацией чая госпожа Бристоль знает число чашек с каждым способом приготовления (молоко или чай сначала), поэтому якобы предоставляет правильное число угадываний в каждой категории. Как было указано Фишером, в предположении нуль-гипотезы о независимости испытаний это ведёт к использованию гипергеометрического распределения для данного счёта в таблице.

С большими выборками в этой ситуации может использоваться тест хи-квадрат. Однако этот тест не является подходящим, когда математическое ожидание значений в любой из ячеек таблицы с заданными границами оказывается ниже 10: вычисленное выборочное распределение испытуемой статистической величины только приблизительно равно теоретическому распределению хи-квадрат, и приближение неадекватно в этих условиях (которые возникают, когда размеры выборки малы, или данные очень неравноценно распределены среди ячеек таблицы). Тест Фишера, как следует из его названия, является точным и может поэтому использоваться независимо от особенностей выборки. Тест становится трудновычислимым для больших выборок или хорошо уравновешенных таблиц, но, к счастью, именно для этих условий хорошо применим критерий Пирсона ( ).

Для ручных вычислений тест выполним только в случае размерности факторных таблиц . Однако принцип теста может быть расширен на общий случай таблиц , и некоторые статистические пакеты обеспечивают такие вычисления (иногда используя метод Монте-Карло, чтобы получить приближение).

Пример

Точные тесты позволяют получать более аккуратный анализ для маленьких выборок или данных, которые редки. Точные тесты непараметрических исследований — подходящий статистический инструмент для работы с неуравновешенными данными. Неуравновешенные данные, проанализированные асимптотическими методами, имеют тенденцию приводить к ненадёжным результатам. Для больших и хорошо уравновешенных наборов данных точные и асимптотические оценки вероятностей очень похожи. Но для маленьких, редких, или выведенных из равновесия данных, точные и асимптотические оценки могут быть весьма различными и даже привести к противоположным заключениям относительно разрабатываемой гипотезы (Mehta, Patel, & Tsiatis, 1984; Mehta, 1995; Mehta & Patel, 1997).

Потребность в тесте Фишера возникает, когда у нас есть данные, разделённые на две категории двумя отдельными способами. Например, выборка подростков может быть разделена на категории с одной стороны по признаку пола (юноши и девушки), а с другой стороны — по признаку нахождения на диете или нет. Можно выдвинуть гипотезу, о том, что доля находящихся на диете людей выше среди девушек, чем среди юношей, и мы хотим удостовериться, является ли какое-нибудь наблюдаемое различие пропорций статистически значимым.

Данные могли бы быть похожими на следующие:

юношидевушкивсего
на диете1910
не на диете11314
всего121224

Такие данные не подходят для анализа методом хи-квадрат, потому что математические ожидания в таблице все ниже 10, а в факторной таблице размера число степеней свободы всегда равно одному.

Вопрос, который мы задаём об этих данных: зная, что 10 из 24 подростков — люди, сидящие на диете, и что 12 из этих 24 — девушки, какова вероятность, что 10 диетиков так неравноценно распределены между полами? Если бы мы выбрали 10 подростков наугад, какова вероятность, что 9 из них оказались взяты из набора 12 лиц женского пола и только 1 из числа 12 юношей?

Прежде чем продолжить исследование теста Фишера, введём необходимую нотацию. Обозначим числа в ячейках буквами , , и соответственно, назовём итоги суммирования по строкам и столбцам маргинальными (граничными) итогами и представим общий итог буквой .

Теперь таблица выглядит следующим образом:

ЮношиДевушкиВсего
На диетеaba + b
Не на диетеcdc + d
Всегоa + cb + dn

Фишер показал, что вероятность получения любого такого набора величин даётся гипергеометрическим распределением:

где столбцы в скобках — биномиальные коэффициенты, а символ «!» является оператором факториала.

Эта формула даёт точную вероятность наблюдения любого специфического набора данных при условии заданных маргинальных итогов, общего итога и нулевой гипотезе об одинаковой предрасположенности к диете независимо от пола (соотношение между диетиками и людьми, не находящимися на диете, для юношей такое же, как для девушек).

Фишер показал, что мы можем иметь дело только со случаями, где маргинальные (предельные) итоги (marginal totals) те же самые, что и в приведённой таблице. В приведённом примере таких случаев 11. Из них только один столь же «перекошен» (в сторону женской склонности к диете), как и демонстрационный пример:

ЮношиДевушкиВсего
На диете01010
Не на диете12214
Всего121224

Чтобы оценить статистическую значимость наблюдаемых данных, то есть полную вероятность такого же или более выраженного «перекоса» в сторону нахождения девушек на диете, в предположении нулевой гипотезы мы должны вычислить вероятности ценности для обеих этих таблиц и сложить их. Это даёт т. н. односторонний тест; для двухстороннего теста мы должны также рассмотреть таблицы, которые так же перекошены, но в противоположном направлении (то есть рассмотреть случай преимущественного нахождения на диете юношей).

К сожалению, классификация таблиц согласно тому, являются ли они «чрезвычайно перекошенными», проблематична. Подход, используемый языком программирования R, предлагает вычислить величину критерия , суммируя вероятности для всех таблиц с вероятностями, меньше чем или равными вероятности наблюдаемой таблицы. Для таблиц с малыми числами в ячейках двусторонняя оценка критерия может существенно отличаться от удвоенной величины односторонней оценки, в отличие от случая со статистическими данными, у которых есть симметрическое распределение выборки.

Большинство современных статистических пакетов вычисляет значение тестов Фишера, в некоторых случаях даже там, где приближение хи-квадрат также было бы приемлемым. Фактические вычисления, выполненные статистическими пакетами программ, будут, как правило, отличаться от описанных. В частности, числовые трудности могут следовать из больших величин факториалов. Простые, но даже более эффективные вычислительные подходы основаны на использовании гамма-функции или логарифмической гамма-функции, однако точное вычисление гипергеометрических и биномиальных вероятностей — область современных исследований.

Литература

  • Fisher, R. A. 1922. "On the interpretation of χ2 from contingency tables, and the calculation of P". Journal of the Royal Statistical Society 85(1):87-94.
  • Fisher, R. A. 1954 Statistical Methods for research workers. Oliver and Boyd.
  • Mehta, C. R. 1995. SPSS 6.1 Exact test for Windows. Englewood Cliffs, NJ: Prentice Hall.
  • Mehta, C. R., Patel, N. R., & Tsiatis, A. A. 1984. Exact significance testing to establish treatment equivalence with ordered categorical data. Biometrics, 40(3), 819-825.
  • Mehta, C. R., Patel, N. R. 1997. Exact inference in categorical data. Biometrics, 53(1), 112-117.

См. также

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии