Теорема об угле, опирающемся на диаметр окружности (иногда называется теорема Фалеса) — классическая теорема планиметрии, частный случай теоремы о вписанном угле.
Плоский угол, опирающийся на диаметр окружности, — прямой.
Используя свойство угла, опирающегося на диаметр, можно построить касательную к окружности. Пусть дана окружность и точка вне этой окружности, построим касательные из точки к окружности . Соединим центр окружности с точкой и на отрезке , как на диаметре, построим окружность. Две окружности пересекаются по двум точкам — обозначим их и . будет прямой, так как вписанный и опирается на диаметр. — радиус окружности , перпендикулярный прямой , пересекающей окружность в точке ; следовательно, — касательная. Аналогичные рассуждения можно провести о точке .
![]() |
o se del mezzo cerchio far si puote
triangol sì ch'un retto non avesse. |
Или можно ли в полукруге построить треугольник,
который не имел бы прямого угла. |
![]() | |
— «Божественная комедия» Данте Алигьери, «Рай», Песнь XIII, строки 101—102. Перевод Владимира Викторовича Чуйко. |
![]() |
Это заготовка статьи по геометрии. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .