Симметрическая функция от n переменных — это функция, значение которой на любом n-кортеже аргументов то же самое, что и значение на любой перестановке этого n-кортежа[1]. Если, например,
, функция может быть симметрической на всех переменных или парах
,
или
. Хотя это может относиться к любым функциям, для которых n аргументов имеют одну и ту же область определения, чаще всего имеются в виду многочлены, которые в этом случае являются симметрическими многочленами. Вне многочленов теория симметрических функций бедна и мало используется.
Симметризация
Если задана какая-либо функция f от n переменных со значениями в абелевой группе (то есть в группе с коммутативной операцией), симметрическая функция может быть построена путём суммирования значений f по всем перестановкам аргументов. Аналогично, антисимметрическая функция может быть построена как сумма по всем чётным перестановкам, из которой вычитается сумма по всем нечётным перестановкам. Эти операции, конечно, необратимы и могут привести к тождественно равной нулю функции для нетривиальной функции f. Единственный случай, когда f может быть восстановлена, когда известны симметризация функции и антисимметризация, это когда n = 2 и абелева группа допускает деление на 2 (операция, обратная удвоению). В этом случае f равна половине суммы симметризации и антисимметризации.
Примеры
- По определению, симметрическая функция от n переменных имеет свойство, что
и т.д..
- В общем случае функция остаётся той же самой при любой перестановке переменных. Это означает, что в нашем случае
- и так далее для всех перестановок
- Если переставить местами x и y, функция примет вид
,
- что в точности совпадает с исходной функцией f(x,y).
- Теперь рассмотрим функцию
- Если переставить x и y местами, получим
- Эта функция, очевидно, не будет той же самой, что и исходная, если a ≠ b, следовательно, она не симметрическая.
Литература
- Macdonald I. G.[en] Symmetric Functions and Orthogonal Polynomials. New Brunswick, New Jersey. University Lecture Series, 12. American Mathematical Society, Providence, Rhode Island, 1998. xvi+53 pp. ISBN 0-8218-0770-6 MR: 1488699
- Macdonald I. G.[en] Symmetric Functions and Hall Polynomials. Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. ISBN 0-19-853489-2 1st edition. — 1979.
- Макдональд И.[en]. Симметрические функции и многочлены Холла. — Мир, 1984. — 224 с.
- David F. N., Kendall M. G., Barton D. E. Symmetric Function and Allied Tables. — Cambridge University Press, 1966.
- Joseph P. S. Kung, Gian-Carlo Rota, Catherine H. Yan. Combinatorics: The Rota Way. — Cambridge University Press, 2009. — xii+396 с. — ISBN 978-0-521-73794-4.
— §5.1 Symmetric functions, p. 222–225.
— §5.7. Symmetric Functions Over Finite Fields, p. 259–270.
- Ван дер Варден Б. Л. Алгебра. — М.: «Наука», 1979.
— §33. Симметрические функции, с. 121.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .