WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Равноугольный четырёхугольник

В евклидовой геометрии равноугольный многоугольник — это многоугольник, чьи углы при вершинах равны. Если при этом равны и стороны, то получается правильный многоугольник.

Единственным равноугольным треугольником является правильный треугольник. Только прямоугольники, включая квадрат, являются равноугольными четырёхугольниками[1].

В равноугольном n-угольнике каждый угол равен . Это теорема о равноугольных многоугольниках.

Для равноугольных многоугольников верна теорема Вивиани[2]:

Сумма расстояний от внутренней точки до сторон равноугольного многоугольника не зависит от расположения точки и является инвариантом многоугольника.

Прямоугольник (равноугольный четырёхугольник) с целыми длинами сторон можно разделить на единичные квадраты, а равноугольный шестиугольник с целыми длинами сторон можно разделить на правильные треугольники. Некоторые, но не все, равноугольные двенадцатиугольники можно разложить на комбинацию единичных квадратов и равносторонних треугольников. Остальные можно разложить на эти два вида фигур с дополнительными ромбами с углами 30 ° и 150 °[1].

Вписанный многоугольник равноуголен в том и только в том случае, когда чередующиеся стороны равны (то есть, стороны 1, 3, 5, ... равны и стороны 2, 4, ... тоже равны). Таким образом, если n нечётно, циклический многоугольник равноуголен в том и только в том случае, когда он правильный[3].

Для простого числа p любой равноугольный p-угольник с целыми сторонами является правильным. Более того, любой равноугольный pk-угольник с целыми сторонами имеет p-кратную вращательную симметрию[4].

Примечания

  1. 1 2 Derek Ball. Equiangular polygons // The Mathematical Gazette. — 2002. Т. 86, вып. 507. С. 396—407.
  2. Elias Abboud "On Viviani’s Theorem and its Extensions" pp. 2, 11
  3. De Villiers, Michael. Equiangular cyclic and equilateral circumscribed polygons // Mathematical Gazette. — March 2011. Т. 95. С. 102—107.
  4. McLean, K. Robin. A powerful algebraic tool for equiangular polygons // Mathematical Gazette. — November 2004. Т. 88. С. 513—514.

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии