Для улучшения этой статьи желательно: |
Проективная прямая — одномерное проективное пространство. Проективная прямая представляет собой множество прямых (одномерных подпространств) в 2-мерном линейном пространстве. Точки проективной прямой могут быть заданы с помощью однородных координат . Как топологическое пространство, проективная прямая представляет собой одноточечную компактификацию аффинной прямой.
Вещественная проективная прямая с пучком гладких функций является гладким многообразием. Это многообразие диффеоморфно окружности . Комплексная проективная прямая — сфера Римана, — как вещественное многообразие, диффеоморфна двумерной сфере . Для тела кватернионов проективная прямая, как вещественное многообразие, .
Для групп и др. может быть определено действие на проективной прямой. Факторизуя по группе скалярных матриц, получаем группы , для которых это действие является точным. Для конечного поля изоморфна некоторой подгруппе конечной симметрической группы[1].
Проективная прямая является важным примером проективного многообразия. Полем функций проективной прямой является поле рациональных функций. Группой автоморфизмов поля является группа . Если невырожденная квадратичная кривая содержит хотя бы одну точку, то она бирационально изоморфна проективной прямой.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .