WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Полутранзитивный граф — это граф, который и вершинно-транзитивен, и рёберно-транзитивен, но не симметричен[1]. Другими словами, граф полутранзитивен, если его группа автоморфизмов действует транзитивно как на вершины, так и на рёбра, но не на упорядоченные пары связанных вершин.

Граф Холта является наименьшим полутранзитивным графом. Недостаточность зеркальной симметрии на этом рисунке отражает факт, что рёбра не эквивалентны их симметричным.

Любой связный симметричный граф должен быть вершинно-транзитивен и рёберно-транзитивен. Обратное верно для графов нечётной степени[2], так что полутранзитивные графы нечётной степени не существуют. Однако существуют транзитивные графы чётной степени[3]. Наименьшим полутранзитивным графом является граф Холта степени 4 с 27 вершинами[4][5].

Примечания

Литература

  • Gross J.L. Yellen J. Handbook of Graph Theory. — CRC Press, 2004. ISBN 1-58488-090-2.
  • Babai L. Automorphism groups, isomorphism, reconstruction // Handbook of Combinatorics / Graham R., Grötschel M., Lovász L. — Elsevier, 1996.
  • Norman Biggs. Algebraic Graph Theory. — 2nd. — Cambridge: Cambridge University Press, 1993. ISBN 0-521-45897-8.
  • Derek F. Holt. A graph which is edge transitive but not arc transitive // Journal of Graph Theory. — 1981. Т. 5, вып. 2. DOI:10.1002/jgt.3190050210.
  • Bouwer Z. Vertex and Edge Transitive, But Not 1-Transitive Graphs // Canad. Math. Bull.. — 1970. Т. 13.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии