WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Между функциями распределения и множеством их характеристических функций существует взаимно однозначное соответствие.

В том числе теоремы Хелли показывают, что это соответствие не только взаимно однозначное, но и взаимно непрерывное.

Первая и вторая теоремы Хелли

Первая теорема Хелли

Из всякой последовательности функций распределения можно выбрать слабо сходящуюся подпоследовательность.

Вторая теорема Хелли

Если  — непрерывная ограниченная функция на прямой и то

Доказательство первой теоремы Хелли

Пусть  — всюду плотное на прямой счетное множество.

Из ограниченной последовательности выбираем сходящуюся подпоследовательность , предел которой обозначим

Из ограниченной последовательности выбираем сходящуюся подпоследовательность и т. д.

Далее выбираем диагональную подпоследовательность , для которой для любой точки

По лемме отсюда вытекает

Лемма

Если на всюду плотном на прямой множестве , то

Замечание

может не быть функцией распределения. Например, если при и при то

Доказательство второй теоремы Хелли

Пусть  — точки непрерывности .Докажем сначала, что

.

Пусть . Разделим точками непрерывности функции на такие отрезки , что для точек .

Это сделать можно, так как равномерно непрерывна на , а точки непрерывности расположены всюду плотно.

Определим ступенчатую функцию.

на .

Тогда

где .

При последнее слагаемое может быть сделано как угодно малым, откуда и следует

Для доказательства

выберем таким, чтобы и и чтобы точки были точками непрерывности

Тогда, так как можно выбрать таким, что при и

Оценим разность

На основании заключаем, что правая часть

может быть сделана сколь угодно малой, что и доказывает теорему.

См. также

Литература

  • Севастьянов В.А. Курс теории вероятностей и математической статистики. — 1982. — 254 с.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии