Эту статью следует викифицировать. |
Бинарное отношение на множестве называется отношением нестрогого частичного порядка (отношением порядка, отношением рефлексивного порядка), если имеют место
Множество , на котором введено отношение частичного порядка, называется частично упорядоченным. Отношение нестрогого частичного порядка часто обозначают знаком .
Отношение частичного порядка называется линейным порядком, если выполнено условие
Множество , на котором введено отношение линейного порядка, называется линейно упорядоченным, или цепью.
Отношение , удовлетворяющее только условиям рефлексивности и транзитивности, называется предпорядком, или квазипорядком.
Если условие рефлексивности заменить на условие антирефлексивности:
то получим определение строгого, или антирефлексивного частичного порядка (обозначается обычно символом ).
Замечание. Одновременная антирефлексивность и транзитивность отношения влечёт асимметричность, которое является более сильным условием, чем антисимметричность. Поэтому отношение является отношением строгого порядка тогда и только тогда, когда оно антирефлексивно и транзитивно.
В общем случае, если — транзитивное, антисимметричное отношение, то
Размерность Душника — Миллера (иногда называемая просто размерность) частичного порядка — это наименьшее количество отношений линейного порядка, пересечение которых равно данному частичному порядку. Задача распознавания того, превосходит ли размерность данного конечного частичного порядка число принадлежит к классу P при но является NP-полной при [1]
Знаки и изобретены Хэрриотом.
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .