Нильрадикал коммутативного кольца — идеал, состоящий из всех его нильпотентных элементов.
Нильрадикал действительно является идеалом, поскольку сумма двух нильпотентных элементов нильпотентна (по формуле бинома Ньютона), как и произведение нильпотентного и произвольного элементов. Также нильрадикал можно охарактеризовать как пересечение всех простых идеалов кольца.
Если — произвольное коммутативное кольцо, то факторкольцо по его нильрадикалу не содержит нильпотентных элементов.
Каждый максимальный идеал прост, поэтому радикал Джекобсона — пересечение всех максимальных идеалов — содержит нильрадикал. В случае артинова кольца они просто совпадают, при этом нильрадикал можно описать как максимальный нильпотентный идеал. В общем случае, если нильрадикал конечно порождён, то он нильпотентен.
В некоммутативном случае можно выделить три способа обобщения понятия нильрадикала. Нижний нильрадикал некоммутативного кольца определяется как пересечение всех простых идеалов. Верхний нильрадикал — как идеал, порожденный всеми нильпотентными идеалами. Радикал Левицкого по размеру находится между ними, и определяется как максимальный локально нильпотентный идеал[en]. Если кольцо является нётеровым, все три определения совпадают.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .