Смешанное произведение компланарных векторов . Это — критерий компланарности трёх векторов.
Компланарные векторы — линейно зависимы. Это — тоже критерий компланарности.
Существуют действительные числа такие, что для компланарных , за исключением случаев или . Это — переформулировка предыдущего свойства и тоже критерий компланарности.
В 3-мерном пространстве 3 некомпланарных вектора образуют базис. То есть любой вектор можно представить в виде: . Тогда будут координатами в данном базисе.
Другие объекты
Выше описанные критерии компланарности позволяют определить это понятие для векторов, понимаемых не в геометрическом смысле (а, например, как элементы произвольного векторного пространства).
Иногда компланарными называют те точки (или другие объекты), которые лежат на (принадлежат) одной плоскости. 3 точки определяют плоскость и, тем самым, всегда (тривиально) компланарны. 4 точки, в общем случае (в общем положении), не компланарны.
Можно распространить понятие компланарности и на прямые в пространстве. Тогда параллельные или пересекающиеся прямые будут компланарны, а скрещивающиеся прямые — нет.
Примечания
↑ Выгодский М. Я. Справочник по высшей математике. М., Наука, 1975, § 115
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии