Гладкие структуры на четырёхмерном евклидовом пространстве — примеры гладких многообразий гомеоморфных, но не обязательно диффеоморфных четырёхмерному евклидову пространству.
Четырёхмерное евклидово пространство допускает экзотические гладкие структуры, то есть не диффеоморфные четырёхмерному евклидову пространству. В размерностях, отличных от 4, экзотических гладких структур на евклидовом пространстве не существует.
Существование таких примеров было доказано в 1982 году Майклом Фридманом и другими. Доказательство использовало теорему Фридмана о топологических 4-мерных многообразиях, и теорему Саймона Дональдсона о гладких 4-мерных многообразиях.
Существования континуума различных гладких структур на было доказано сначала Клиффордом Таубесом.
До этого существование экзотических гладких структур было известо на сферах, хотя вопрос о существовании таких структур на 4-мерной сфере остаётся открытым (по состоянию на 2016 год).
Экзотическую гладкую структуру называется малой, если она диффеоморфна открытому подмножеству стандартом . В противном случае называется большой.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .