Гипотеза Лемуана, известная также как гипотеза Леви, утверждает, что все нечётные числа, большие 5, можно представить как суммы нечётного простого числа и чётного полупростого числа.
Гипотезу высказал Эмиль Лемуан в 1895 году, но она была ошибочно приписана на сайте MathWorld Хайману Леви, который обсуждал её в 1960-х годах[1].
Похожая гипотеза Чживэй Сана 2008 года утверждает, что все нечётные целые числа, превосходящие 3, можно представить в виде суммы нечётного простого числа и произведения двух последовательных целых чисел (p+x(x+1)).
Выражая алгебраически, 2n + 1 = p + 2q всегда имеет решение с простыми p и q (не обязательно различными) для n > 2. Гипотеза Лемуана похожа на тернарную гипотезу Гольдбаха, но сильнее.
Например, 47 = 13 + 2 × 17 = 37 + 2 × 5 = 41 + 2 × 3 = 43 + 2 × 2. В последовательности A046927 подсчитывается, сколькими различными путями число 2n + 1 может быть представлено в виде p + 2q.
Согласно сайту MathWorld Корбитт проверил гипотезу вплоть до 109.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .