WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Функция полезности

Фу́нкция поле́зности — функция, с помощью которой можно представить предпочтения на некотором множестве альтернатив. Функция полезности является очень удобным вспомогательным средством, которое открывает возможность использования теории оптимизации при решении задачи потребителя. Без использования функции полезности решение такой задачи с математической точки зрения может быть затруднительным. С другой стороны, не каждое предпочтение может быть представлено с помощью функции полезности. Тем не менее, несмотря на некоторую ограниченность подхода, функция полезности является неотъемлемой частью большинства современных экономических моделей.

Формальное определение

Пусть дано некоторое множество альтернатив , на котором определено отношение предпочтения . Тогда вещественнозначная функция называется функцией полезности, если выполнено условие

В микроэкономике господствует ординалистский подход к моделированию поведения и выбора. В соответствии с ним числовые значения функции полезности не играют роли, важны лишь соотношения между ними. Если значение функции полезности для одной из альтернатив выше, то эта альтернатива является более предпочтительной для агента. При этом разность значений или частное от их деления не несёт никакой информации. Именно эта идея отражена в определении.

При кардиналистском подходе числовые значения, наоборот, имеют существенное значение. Такой подход используется, например, при моделировании поведения агента в условиях неопределенности с использованием функции полезности фон Неймана-Моргенштерна. В этом случае часто используются денежные, а не абстрактные единицы полезности, и поэтому разность значений уже имеет экономический смысл.

Условия существования функции полезности

Для того чтобы предпочтения можно было представить в виде функции полезности, необходимо, чтобы само предпочтение было рациональным, то есть отвечало аксиомам полноты и транзитивности.

Достаточные условия зависят от самого множества альтернатив и от свойств предпочтений. Если множество конечно или счетно, а отношение предпочтения рационально, то существует функция полезности, которая представляет эти предпочтения.

Если множество несчетно, то приходится дополнительно требовать непрерывности предпочтений. В этом случае теорема Дебре (Debreu) гарантирует существование функции полезности. Более того, получающаяся при доказательстве теоремы функция полезности является непрерывной.

Часто на предпочтения накладываются дополнительные условия, чтобы получить функции с теми или иными свойствами. Так, можно требовать монотонности, локальной ненасыщаемости и выпуклости.

Непрерывность является необходимым условием существования функции полезности, представляющей рациональное предпочтение, но оно не является достаточным. Так, например, функция полезности (целая часть числа) представляет предпочтения, которые не являются непрерывными. Сама функция при этом также разрывна.

Свойства функции полезности

Пусть задана строго возрастающая функция и пусть  — функция полезности. Тогда композиция функций также является функцией полезности, представляющей то же самое отношение предпочтения . Отметим, что не обязана быть непрерывной.

Если множество является выпуклым, то функция полезности будет квазивогнутой.

Если предпочтения отвечают свойству монотонности (строгой монотонности), то функция будет монотонной (строго монотонной).

Свойство убывающей предельной полезности является следствием вогнутости функции полезности. Если функция дважды дифференцируема, то свойство означает, что вторая частная производная такой функции отрицательна.

Кривая безразличия — это линия (поверхность, гиперповерхность) уровня функции полезности.

Важнейшие примеры функций полезности

Одной из важнейших функций полезности является CES-функция. Аббревиатура CES (constant elasticity of substitution) означает постоянную эластичность замещения альтернатив. Функция имеет следующий вид для двумерного случая

При разных значениях параметра можно получить частные случаи.

Если , то функция является линейной и описывает совершенные заменители. В этом случае предельная норма замещения равна отношению параметров .

Если , то получается функция Леонтьева, которая описывает совершенные дополнители. Предельная норма замещения в этом случае бесконечна.

При получается функция Кобба-Дугласа, если наложить дополнительное условие .

См. также

Литература

  • Mas-Colell A., Whinston M., Green J. Microeconomic theory. — Oxford University Press, 1995. — 320 с. ISBN 0-19-510268-1.
  • Rubinstein A. Lecture Notes in Microeconomic Theory. — 2nd. — Princeton University Press, 2013. — 153 с. ISBN 978-0-691-15413-8.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии