WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Технологии модуляции
Аналоговая модуляция
Цифровая модуляция
Импульсная модуляция
Расширение спектра
См. также: Демодуляция
Модулирующий сигнал, несущая и фазоманипулированный сигнал системы спутниковой навигации NAVSTAR GPS

Фа́зовая манипуля́ция (ФМн, англ. phase-shift keying (PSK)) — один из видов фазовой модуляции, при которой фаза несущего колебания меняется скачкообразно в зависимости от информационного сообщения.

Описание

Фазоманипулированный сигнал имеет следующий вид:

где определяет огибающую сигнала; является модулирующим сигналом. может принимать дискретных значений.  — частота несущей;  — время.

Если , то фазовая манипуляция называется двоичной фазовой манипуляцией (BPSK, B-Binary — 1 бит на 1 смену фазы), если  — квадратурной фазовой манипуляцией (QPSK, Q-Quadro — 2 бита на 1 смену фазы), (8-PSK — 3 бита на 1 смену фазы) и т. д. Таким образом, количество бит , передаваемых одним перескоком фазы, является степенью, в которую возводится двойка при определении числа фаз, требующихся для передачи -порядкового двоичного числа.

Фазоманипулированный сигнал можно рассматривать как линейную комбинацию двух ортонормированных сигналов и [1]:

где

Таким образом, сигнал можно считать двухмерным вектором . Если значения отложить по горизонтальной оси, а значения  — по вертикальной, то точки с координатами и будут образовывать пространственные диаграммы, показанные на рисунках.

Двоичная фазовая манипуляция

Фазовое созвездие для двоичной ФМн
Осциллограммы сигналов при двоичной фазовой демодуляции

Двоичная фазовая манипуляция (англ. BPSK — binary phase-shift keying) — самая простая форма фазовой манипуляции. Работа схемы двоичной ФМн заключается в смещении фазы несущего колебания на одно из двух значений, нуль или (180°). Двоичную фазовую манипуляцию можно также рассматривать как частный случай квадратурной манипуляции (QAM-2).

Когерентное детектирование

Вероятность ошибки на бит (BER) в зависимости от Eb/N0

Эта модуляция является самой помехоустойчивой из всех видов ФМн, то есть при использовании бинарной ФМн вероятность ошибки при приёме данных наименьшая. Однако каждый символ несёт только 1 бит информации, что обуславливает наименьшую в этом методе модуляции скорость передачи информации.

Вероятность ошибки на бит (англ. BER — Bit Error Rate) при бинарной ФМн в канале с аддитивным белым гауссовским шумом (АБГШ) может быть вычислена по формуле:

где

Так как на символ приходится 1 бит, то по этой же формуле вычисляется и вероятность ошибки на символ.

В присутствии произвольного изменения фазы, введенного каналом связи, демодулятор не способен определить, какая точка созвездия соответствует 1 и 0. В результате данные часто дифференциально кодируются до модуляции.

Некогерентное детектирование

В случае некогерентного детектирования используется дифференциальная двоичная фазовая манипуляция.

Реализация

Двоичные данные часто передаются со следующими сигналами:

для двоичного «0»;
для двоичной «1»,

где  — частота несущего колебания.

Квадратурная фазовая манипуляция

Фазовое созвездие для квадратурной ФМн.

При квадратурной фазовой манипуляции (англ. QPSK — Quadrature Phase Shift Keying или 4-PSK) используется созвездие из четырёх точек, размещённых на равных расстояниях на окружности. Используя 4 фазы, в QPSK на символ приходится два бита, как показано на рисунке. Анализ показывает, что скорость может быть увеличена в два раза относительно BPSK при той же полосе сигнала, либо оставить скорость прежней, но уменьшить полосу вдвое.

Хотя QPSK можно считать квадратурной манипуляцией (QAM-4), иногда её проще рассматривать в виде двух независимых модулированных несущих, сдвинутых на 90°. При таком подходе чётные (нечётные) биты используются для модуляции синфазной составляющей , а нечётные (чётные) — квадратурной составляющей несущей . Так как BPSK используется для обеих составляющих несущей, то они могут быть демодулированы независимо.

Когерентное детектирование

При когерентном детектировании вероятность ошибки на бит для QPSK такая же, как и для BPSK:

Однако, так как в символе два бита, то значение символьной ошибки возрастает:

При высоком отношении сигнал/шум (это необходимо для реальных QPSK систем) вероятность символьной ошибки может быть оценена приблизительно по следующей формуле:

Некогерентное детектирование

Как и при BPSK, существует проблема неопределённости начальной фазы в приёмнике. Поэтому при некогерентном детектировании QPSK с дифференциальным кодированием на практике используется чаще.

Отличие QPSK от первых видов модуляции (АМн, ЧМн) в том, что плотность передаваемой информации в расчёте на частотную ширину канала (на символ, на герц) выше единицы.

Например, в АМн плотность много меньше единицы (0,1—0,001 бит/Гц) — это связано с необходимостью накопления энергии в фильтрах в первых малочувствительных приёмниках (например русский изобретатель радио А. С. Попов использовал АМн в первом в мире приёмнике). В ЧМн этот показатель приближается к единице (0,1—1) бит/символ (бит/Гц). Например в GMSK, применяемому в GSM плотность информации равняется 1.

Этот вид модуляции используется, например, в стандарте сотовой связи CDMA2000 1X EV-DO.

π/4-QPSK

Здесь изображены два отдельных созвездия использующие кодирование Грея, которые повёрнуты на 45° относительно друг друга. Обычно, чётные и нечётные биты используются для определения точек соответствующего созвездия. Это приводит к уменьшению максимального скачка фазы с 180° до 135°.

Фазовое созвездие для квадратурной π/4 ФМн.

С другой стороны, использование π/4-QPSK приводит к простой демодуляции и вследствие этого она используется в системах сотовой связи с временным разделением каналов.

Сравнение OQPSK и QPSK

ФМн более высоких порядков

Фазовое созвездие для восьмеричной ФМн

ФМн с порядком больше 8 используют редко.

Дифференциальная ФМн

При реализации PSK может возникнуть проблема поворота созвездия, например, в непрерывной передаче без синхронизации. Для решения подобной проблемы может быть использовано кодирование, основанное не на положении фазы, а на её изменении.

Например для DBPSK фаза изменяется на 180° для передачи «1» и остается неизменной для передачи «0».

См. также

Примечания

  1. Прокис Дж. Цифровая связь. — Пер. с англ. // Под ред. Д. Д. Кловского. — М.: Радио и связь, 2000. — 800 с. — стр. 151.

Литература

  • Прокис, Дж. Цифровая связь = Digital Communications / Кловский Д. Д.. М.: Радио и связь, 2000. — 800 с. ISBN 5-256-01434-X.
  • Скляр, Бернард. Цифровая связь. Теоретические основы и практическое применение = Digital Communications: Fundamentals and Applications. — 2 изд. М.: «Вильямс», 2007. — С. 1104. ISBN 0-13-084788-7.
  • Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра = Wireless Digital Communications: Modulation and Spread Spectrum Applications. М.: Радио и связь, 2000. — 552 с. ISBN 5-256-01444-7.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии