WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Теорема сравнения Топоногова — классическая теорема римановой геометрии в целом.

В двумерном случае теорема была доказана Пиццетти (англ.)[1], независимо передоказана Александровым[2] и обобщена Топоноговым[3] на старшие размерности.

Необходимые определения

Для формулировки теоремы нам потребуется пара определений. Пусть полное риманово многообразие размерности хотя бы 2 и с секционной кривизной не меньше некоторой константы .

Обозначим через модельную плоскость кривизны . При это евклидова плоскость, при , изометрично поверхности сферы радиуса и при , есть плоскость Лобачевского кривизны .

Треугольником в называется тройка кратчайших соединяющие попарно три очки. При этом каждая из трёх точек называется вершиной треугольнка, а величина угла между парой исходящих из вершины кратчайших называется углом при этой вершине.

Пусть есть треугольник в . Предположим в существует треугольник , с равными соответствующими сторонами и при этом такой треугольник является единственным с точностью до конгруэнтности. В этом случае треугольник называется модельным треугольником треугольника в .

Заметим, что модельный треугольник всегда определён в случае если . В случае если , это верно если периметр строго меньше .

Пусть в есть модельный треугольник в . Определим модельный угол как угловую меру .

Формулировка

Теорема. Пусть — полное риманово многообразие и с секционной кривизной не меньше некоторой константы . Тогда для углы любого треугольника в M не меньше соответствующих углов его модельного треугольника . Иначе говоря

для любого треугольника .

Следствия

  • Предположим — полное риманово многообразие с неотрицательной секционной кривизной. Тогда для любой точки , функция является 2-вогнутой; то есть, для любой нормальной геодезической функция является вогнутой.

Вариации и обобщения

  • Обратная теорема также верна, то есть если сравнение углов верно для любого треугольника в римановом многообразии то имеет кривизну хотя бы .
  • Для каждой точки x на стороне треугольника , обозначим через соответственную точку на стороне . Тогда утверждение теоремы эквивалентно выполнению следующего неравенства
где обозначает расстояние между точками и в римановом многообразии .
  • Утверждение теоремы эквивалентно выполнению следующего неравенства
для произвольной четвёрки точек

См. также

Литература

  • Громол Д., Клингенберг В., Мейер В., Риманова геометрия в целом, Мир, 1971, с. 343.
  • Бураго Ю.Д., Залгаллер В.А., Введение в риманову геометрию 1991, с. 320

Ссылки

  1. Pizzetti, P., Paragone fra due triangoli a lati uguali. Atti della Reale Accademia dei Lincei, Rendiconti (5). Classe di Scienze Fisiche, Matematiche e Naturali 16 (1), 1907, 6–11.
  2. А. Д . Александров, Внутренняя геометрия выпуклых поверхностей, М.—Л.,Гостехиздат, 1948.
  3. В. А. Топоногов, Римановы пространства кривизны, ограниченной снизу УМН, 14:1(85) (1959), 87–130

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии