Формула Эйлера — теорема планиметрии, связывает расстояние между центрами вписанной и описанной окружностей и их радиусами.
Теорема названа в честь Леонарда Эйлера.
Расстояние между центрами вписанной и описанной окружностей треугольника может быть определено по формуле
где — радиус описанной, — радиус вписанной окружности.
Пусть — центр описанной окружности треугольника , а – центр вписанной окружности. Если луч пересекает описанную окружность в точке , то является средней точкой дуги . Проведём луч и обозначим его точку пересечения с описанной окружностью как . Тогда будет диаметром описанной окружности. Из точки опустим перпендикуляр на Тогда Запишем формулу Эйлера немного в другом виде
Можно заметить, что слева стоит степень точки относительно описанной окружности (если быть точным, то минус степень точки). То есть, достаточно доказать равенство . По лемме о трезубце значит, достаточно доказать, что . Теперь заметим, что и то есть, требуемое равенство можно переписать в виде Перепишем его ещё немного: . Это равенство следует из подобия треугольников и . В самом деле, углы и у этих треугольников прямые, а углы и равны, потому что оба опираются на дугу (более того, отношение равно синусу угла ).
Для вневписанных окружностей уравнение выглядит похоже:
где — радиус одной из вневписанных окружностей, а — расстояние от центра описанной окружности до центра этой вневписанной окружности[3][4][5].
![]() |
Это заготовка статьи по геометрии. Вы можете помочь проекту, дополнив её. |
Для улучшения этой статьи по математике желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .