WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В математике теорема Харди — Рамануджана[1] утверждает, что скорость роста числа различных простых делителей числа определяется функцией повторного логарифма — , а «разброс» числа делителей — квадратным корнем этой функции.

Теорема

Пусть действительная функция такова, что , и пусть  — число натуральных чисел , для которых выполнено следующее неравенство

или более традиционно

, где

Тогда

Простое доказательство этой теоремы нашел Пал Туран.

Обобщения и усиления

Такой же результат верен и для числа всех простых сомножителей в разложении числа .

Эта теорема обобщается теоремой Эрдёша — Каца, в которой доказывается, что распределение различных простых делителей натуральных чисел является нормальным со «средним» и «дисперсией» равными . Таким образом, имеется некоторая связь между распределением числа простых делителей и предельными законами теории вероятностей — центральной предельной теоремой и законом повторного логарифма.

Примечания

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии