В математике теорема Харди — Рамануджана[1] утверждает, что скорость роста числа различных простых делителей числа определяется функцией повторного логарифма — , а «разброс» числа делителей — квадратным корнем этой функции.
Пусть действительная функция такова, что , и пусть — число натуральных чисел , для которых выполнено следующее неравенство
или более традиционно
Тогда
Простое доказательство этой теоремы нашел Пал Туран.
Такой же результат верен и для числа всех простых сомножителей в разложении числа .
Эта теорема обобщается теоремой Эрдёша — Каца, в которой доказывается, что распределение различных простых делителей натуральных чисел является нормальным со «средним» и «дисперсией» равными . Таким образом, имеется некоторая связь между распределением числа простых делителей и предельными законами теории вероятностей — центральной предельной теоремой и законом повторного логарифма.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .