WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Сходимость к константе Бруна.

Теоерма Бруна утверждает, что сумма чисел, обратных числам-близнецам (парам простых чисел, которые отличаются лишь на 2) сходится к конечному значению, известному как константа Бруна, которая обозначается как B2 (последовательность A065421 в OEIS). Теорему Бруна доказал Вигго Брун в 1919, и она имеет историческое значение для методов решета[en].

Асимптотические границы чисел-близнецов

Сходимость суммы обратных к числам-близнецам следует из ограниченности плотности последовательности чисел-близнецов. Пусть означает число простых чисел, для которых p + 2 тоже является простым (т.е. является числом чисел-двойников, не превосходящих x). Тогда для мы имеем

То есть числа-близнецы более редки по сравнению с простыми числами почти на логарифмический множитель. Из этого ограничения следует, что сумма обратных к числам-близнецам сходится, или, другими словами, числа-близнецы образуют маленькое множество[en]. Сумма в явном виде

либо имеет конечное число членов, либо имеет бесконечное число членов, но сходится к значению, известному как константа Бруна.

Из факта, что сумма обратных значений простым числам расходится, вытекает, что существует бесконечно много простых чисел. Поскольку сумма обратных значений чисел-близнецов сходится, из этого результата невозможно заключить, что существует бесконечно много чисел-близнецов. Константа Бруна иррациональна только в случае бесконечного числа чисел-двойников.

Числовые оценки

При вычислении чисел-двойников вплоть до 1014 (и обнаружении по пути ошибки Pentium FDIV), Томас Р. Найсли эвристически оценил константу Бруна примерно равной 1,902160578[1]. Найсли расширил вычисления до 1,6⋅1015 к 18 января 2010, но это не было самое большое вычисление этого типа.

В 2002 Паскаль Себа и Патрик Демишель использовали все числа-двойники вплоть до 1016 и получили оценку[2]

B2 ≈ 1,902160583104.

Оценка опирается на оценку суммы в 1,830484424658... для чисел-двойников, меньших 1016. Доминик Клайв показал (в неопубликованных тезисах), что B2 < 2.1754 в предположении, что верна расширенная гипотеза Римана[3].

Существует также константа Бруна для квадруплетов близнецов. Квадруплет простых чисел[en] — это пара двух простых двойников, разделённых расстоянием 4 (наименьшее возможное расстояние). Несколько квадруплетов — (5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109). Константа Бруна для квадруплетов, обозначаемая B4, является суммой обратных чисел ко всем квадруплетам:

И эта сумма равна

B4 = 0,87058 83800 ± 0,00000 00005, ошибка имеет уровень уверенности в 99 % (согласно Найсли)[4].

Эту константу не следует путать с константой Бруна для родственных простых чисел[en], пар простых чисел вида (p, p + 4), поскольку эта константа тоже записывается как B4.

Дальнейшие результаты

Пусть (последовательность A005597 в OEIS) — константа простых-близнецов. Есть гипотеза, что

В частности,

для любого и всех достаточно больших x.

Многие специальные случаи, упомянутые выше, были доказаны. Недавно Цзие У (Jie Wu) доказал, что для достаточно большого x,

,

где 4,5 соответствует случаю выше.

В популярной культуре

Цифры константы Бруна были использованы в заявке в $1.902.160.540 на патентном аукционе Nortel. Заявка была опубликована компанией Google и была одной из трёх заявок Google, основанных на математических константах[5].

См. также

Примечания

  1. Nicely, Thomas R. Enumeration to 1.6*10^15 of the twin primes and Brun's constant. Some Results of Computational Research in Prime Numbers (Computational Number Theory) (18 January 2010). Проверено 16 февраля 2010.
  2. Introduction to twin primes and Brun’s constant computation.
  3. Klyve, Dominic Explicit bounds on twin primes and Brun's Constant. Проверено 13 мая 2015.
  4. Nicely, Thomas R. Enumeration to 1.6⋅1015 of the prime quadruplets. Some Results of Computational Research in Prime Numbers (Computational Number Theory) (26 August 2008). Проверено 9 марта 2009.
  5. Damouni, Nadia. Dealtalk: Google bid "pi" for Nortel patents and lost. Reuters (1 July 2011). Проверено 6 июля 2011.

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии