WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Дисульфид молибдена
Общие
Систематическое
наименование
сульфид молибдена(IV)
Традиционные названия дисульфид молибдена, двусернистый молибден
Хим. формула MoS2
Физические свойства
Состояние черный кристалл, минерал, камень
Молярная масса 160,07 г/моль
Плотность 4,68 ÷ 5,06 г/см³
Термические свойства
Т. плав. (разл.) 1185 °C, 2100[1]
Химические свойства
Растворимость в воде практически нерастворим
Структура
Координационная геометрия тригональная призматическая (Mo4+), пирамидальная (S2−)
Кристаллическая структура гексагональная, hP6, пространственная группа P63/mmc, № 194
Классификация
Рег. номер CAS 1317-33-5
PubChem
Рег. номер EINECS 215-263-9
SMILES
InChI
RTECS QA4697000
ChEBI 30704
ChemSpider
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Сульфид молибдена(IV) (дисульфид молибдена) — неорганическое бинарное химическое соединение четырёхвалентного молибдена с двухвалентной серой. Химическая формула .

Физические свойства

Дисульфид молибдена(IV) представляет собой серо-голубой или чёрный кристаллический порошок, жирный на ощупь (как графит), твёрдость 1—1,5 по шкале Мооса (оставляет чёрный след на бумаге).

Дисульфид молибдена существует в двух кристаллических модификациях:

В дисульфиде молибдена каждый атом Mo(IV) находится в центре тригональной призмы и окружён шестью атомами серы. Тригональная призма ориентирована так, что в кристалле атомы молибдена находятся между двумя слоями атомов серы[2]. Из-за слабых ван-дер-ваальсовых сил взаимодействия между атомами серы в MoS2, слои могут легко скользить друг относительно друга. Это приводит к появлению смазочного эффекта.

Дисульфид молибдена является диамагнетиком и полупроводником[3].

Молибденит

Получение

В природе дисульфид молибдена встречается в виде минерала — молибденита. Известна также природная аморфная форма — йордизит (англ. jordisite), которая встречается значительно реже. Руды молибденита всегда содержат большое количество примесей, поэтому их обогащают с помощью флотации, получая в конце процесса относительно чистый MoS2 — основной исходный продукт для дальнейшего получения молибдена [4].

В лабораторной практике дисульфид молибдена может быть получен непосредственно из элементов:

Взаимодействием молибдена или его диоксида с сероводородом:

Химические свойства

Дисульфид молибдена не растворяется в воде, не реагирует с разбавленными кислотами и щелочами.

При нагревании без доступа воздуха MoS2 разлагается в несколько стадий:

При нагревании на воздухе дисульфид молибдена окисляется:

Перегретый пар также взаимодействует с дисульфидом молибдена:

Концентрированные неокисляющие кислоты разлагают MoS2 до диоксида:

Концентрированные, горячие окисляющие кислоты окисляют MoS2 до триоксида:

Водород восстанавливает дисульфид молибдена:

При хлорировании дисульфида молибдена при повышенных температурах получается пентахлорид молибдена[источник не указан 3157 дней]:

Дисульфид молибдена реагирует с литием с образованием интеркаляционных соединений:

При реакции с n-бутиллитием получается соединение с формулой LiMoS2[4].

При сплавлении с сульфидами щелочных металлов образует тиосоли:

Использование в качестве смазки

MoS2 с размером частиц в диапазоне 1—100 мкм является сухим смазывающим веществом. Существуют немного альтернатив (в их числе - Дисульфид вольфрама), которые могут иметь высокие смазочные и стабильные свойства вплоть до температур в 350 °C в окислительных средах, а также в вакууме. Испытания MoS2 с использованием трибометра при низких нагрузках (0,1—2 Н) дают значение коэффициента трения меньшего 0,1[5][6].

Дисульфид молибдена часто является компонентом смесей и композиционных материалов с низким коэффициентом трения. Такие материалы используются в критически важных компонентах, например, в авиационных двигателях. При добавлении к пластмассе MoS2 формирует композиционный материал с улучшенной прочностью и с уменьшением трения. В качестве полимеров, к которым добавляют MoS2, используются нейлон, тефлон и веспел (англ. vespel). Были разработаны самосмазывающиеся композиционные покрытия для высокотемпературных конструкций, состоящие из дисульфида молибдена и нитрида титана при помощи CVD-технологии[7].

Специфическое использование

MoS2 часто используется как смазка в двухтактных двигателях, например, в двигателях мотоциклов. Он также используется в шарнирах равных угловых скоростей и в карданном вале.

Со времени войны во Вьетнаме дисульфид молибдена использовался для смазки оружия. Покрытия ствола такой смазкой увеличивает точность стрельбы[8]. В настоящее время дисульфидом покрываются непосредственно пули.

MoS2 применяется в турбомолекулярных насосах, использующихся при получении сверхвысокого вакуума со значением давления до 10−9 торр (при −226 до 399 °C).

Смазка из MoS2 применяется при дорновании для предотвращения образования наростов на обрабатываемой поверхности [9].

Сульфид молибдена (IV) применяется при производстве керамических изделий, так как при добавлении к глинам способен придавать ей синий или красный цвет (в зависимости от процентного содержания) при обжиге.

Использование в нефтехимии

Синтетический дисульфид молибдена используется в качестве катализатора для сероочистки на нефтеочистительных заводах, например, при гидрообессеривании[10]. Эффективность катализаторов из MoS2 увеличивается при их легировании небольшим количеством кобальта или никеля, а также смесями, основанных на оксиде алюминия.

Использование в радиотехнике

Дисульфид молибдена – полупроводник, поэтому может применяться в изготовлении высокочастотных детекторов, выпрямителей или транзисторов.[11][12].

Использование в будущем

В качестве фотокатализатора

В сочетании с сульфидом кадмия дисульфид молибдена увеличивает скорость фотокаталитического производства водорода[13]. А при смешении с диоксидом титана получают чернильную массу, хорошо поглощающую водяные пары в темноте и разлагающуюся на солнце с выделением водорода и кислорода [14].

В качестве генератора тока на осмосе между пресной и соленой водой

Дисульфид молибдена может использоваться для создания осмотических мембран, пропускающих молекулы определенного размера.[15].

См. также

Примечания

  1. Важнейшие соединения молибдена. (недоступная ссылка). Проверено 17 апреля 2010. Архивировано 3 мая 2006 года.
  2. Wells, A.F. Structural Inorganic Chemistry. — Oxford : Clarendon Press, 1984. ISBN 0-19-855370-6.
  3. W. Müller-Warmuth, R. Schöllhorn. Progress in intercalation research. — Springer, 1994. — P. 50. ISBN 0792323572.
  4. 1 2 Patnaik, Pradyot. Handbook of Inorganic Chemical Compounds. — McGraw-Hill, 2003. — P. 587. ISBN 0070494398.
  5. G. L. Miessler and D. A. Tarr. Inorganic Chemistry, 3rd Ed. — Pearson/Prentice Hall publisher, 2004. ISBN 0-13-035471-6.
  6. Shriver, D. F.; Atkins, P. W.; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A. Inorganic Chemistry. — New York : W. H. Freeman, 2006. ISBN 0-7167-4878-9.
  7. ORNL develops self-lubricating coating for engine parts. Архивировано 1 марта 2012 года.
  8. Barrels retain accuracy longer with Diamond Line (недоступная ссылка история ). Norma.
  9. DOW CORNING Z moly-powder (недоступная ссылка история ). Dow Corning.
  10. Topsøe, H.; Clausen, B. S.; Massoth, F. E. Hydrotreating Catalysis, Science and Technology. — Berlin : Springer-Verlag, 1996.
  11. Молибденовые транзисторы заменят кремний в ЖК-дисплеях - ученые, РИА (21.08.2012). Проверено 8 сентября 2014.
  12. Андрей Васильков. Перспективная электроника на дисульфиде молибдена, Компьютерра (05 сентября 2014). Проверено 8 сентября 2014.
  13. CAS researchers discover low-cost photocatalyst for H2 production (недоступная ссылка). Chinese Academy of Sciences. Архивировано 19 июня 2008 года.  (недоступная ссылка)
  14. Ученые придумали способ получать водородное топливо из воды
  15. Как добыть электричество из обычной соленой воды?. Популярная механика.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии