Исчисление Ито — математическая теория, описывающая методы манипулирования со случайными процессами, такими как броуновское движение (или винеровский процесс). Названа в честь создателя, японского математика Киёси Ито. Часто применяется в финансовой математике и теории стохастических дифференциальных уравнений. Центральным понятием этой теории является интеграл Ито
записывающийся также в виде
, где
— броуновское движение или, в более общей формулировке, полумартингал.
Можно показать, что путь интегрирования для броуновского движения нельзя описать стандартными техниками интегрального исчисления. В частности, броуновское движение не является интегрируемой функцией в каждой точке пути и имеет бесконечную вариацию по любому временному интервалу. Таким образом, интеграл Ито не может быть определен в смысле интеграла Римана — Стилтьеса. Однако, интеграл Ито можно определить корректно, если заметить, что подынтегральная функция
есть адаптивный процесс; это означает, что зависимость от времени
его среднего значения определяется поведением только до момента
.
Обозначения
Интегрирование броуновского движения
Процесс Ито
Свойства
Интегрирование по частям
Лемма Ито
Мартингалы-интеграторы
Квадратично интегрируемые мартингалы
p-интегральные мартингалы
Стохастическая производная
and
Литература
- Allouba, Hassan (2006). “A Differentiation Theory for Itô's Calculus”. Stochastic Analysis and Applications. 24: 367–380. DOI 10.1080/07362990500522411.
- Hagen Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 4th edition, World Scientific (Singapore), 2004, (ISBN 981-238-107-4). Пятое издание доступно в виде pdf.
- He Sheng-Wu, Wang Jia-Gang, Yan Jia-An, Semimartingale Theory and Stochastic Calculus, Science Press, CRC Press Inc., 1992 (ISBN 7-03-003066-4, 0-8493-7715-3)
- Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1991 г. (ISBN 0-387-97655-8)
- Philip E. Protter, Stochastic Integration and Differential Equations, Springer, 2001 (ISBN 3-540-00313-4)
- Bernt K. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, 2003 (ISBN 3-540-04758-1)
- Mathematical Finance Programming in TI-Basic, which implements Ito calculus for TI-calculators.
| Эта статья или раздел содержит незавершённый перевод с иностранного языка. Вы можете помочь проекту, закончив перевод. Если вы знаете, на каком языке написан фрагмент, укажите его в этом шаблоне. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .