WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Скрытые уравнения поля (HFE, анг. Hidden Field Equations) — разновидность криптографической системы с открытым ключом, которая является частью многомерной криптографии. Также известна как односторонняя функция с потайным входом HFE. Данная система является обобщением системы Матцумото-Имаи и впервые была представлена Жаком Патарином в 1996 году на конференции Eurocrypt.[1]

Система скрытых уравнений поля основана на многочленах над конечными полями разного размера, чтобы замаскировать связь между закрытым ключом и открытым ключом.[2]

HFE на самом деле является семейством, которое состоит из основных HFE и комбинаций версий HFE. Семейство криптосистем HFE основано на трудности поиска решений системы многомерных квадратных уравнений (так называемой задаче MQ[3]), поскольку она использует частные аффинные преобразования, чтобы скрыть расширение поля и частные полиномы. Скрытые уравнения поля также использовались для построения схем цифровой подписи, таких как Quartz and Sflash.[2][1]

Основная идея[1]

Функция

  1. Пусть  — конечное поле размерности с характеристикой (обычно, но не обязательно ).
  2. Пусть  — расширение степени .
  3. Пусть , и  — элементы .
  4. Пусть , и  — целые.
  5. Наконец, пусть  — функция такая, что:

Тогда является многочленом от .

Пусть теперь будет базисом . Тогда выражение в базисе  :

где  — многочленов от переменных степени 2.

Это верно, так как для любого целого , является линейной функцией . Многочлены могут быть найдены путем выбора «представления» . Такое «представление» обычно задается выбором неприводимого многочлена степени над , поэтому мы можем задать с помощью . В этом случае возможно найти многочлены .

Инверсия

Следует заметить, что не всегда является перестановкой . Однако основой алгоритма HFE является следующая теорема.

Теорема: Пусть  — конечное поле, причем с и «не слишком большими» (например, и ). Пусть  — заданный многочлен от над полем со степенью «не слишком большой» (например, ). Пусть  — элемент поля . Тогда всегда (на компьютере) можно найти все корни уравнения .

Шифрование[1]

Представление сообщения

В поле количество публичных элементов .

Каждое сообщение представлено значением , где  — строка из элементов поля . Таким образом, если , то каждое сообщение представлено битами. Более того, иногда предполагается, что в представление сообщений была помещена некоторая избыточность .

Шифрование

Cекретная часть

  1. Расширение поля степени .
  2. Функция : , которая была описана выше, с «не слишком большой» степенью .
  3. Два афинных преобразования и :

Публичная часть

  1. Поле c элементами и длина .
  2. многочленов размерности над полем .
  3. Способ добавления избыточности в сообщениях (то есть способ получения из ).

Основная идея построения семейства систем скрытых уравнений поля в качестве многомерной криптосистемы заключается в построении секретного ключа, начиная с полинома с одним неизвестным над некоторым конечным полем .[2] Этот полином может быть инвертирован над , то есть может быть найдено любое решение уравнения , если оно существует. Преобразование секрета, также как и расшифровка или/и подпись, основано на этой инверсии.

Как было сказано выше, можно идентифицировать системой уравнений , используя фиксированный базис. Для того чтобы построить криптосистему, полином должен быть преобразован таким образом, чтобы публичная информация скрывала первоначальную структуру и предотвращала инверсию. Это достигается рассмотрением конечных полей в качестве векторного пространства над и выбором двух линейных афинных преобразований и . Триплет формирует приватный ключ. Приватный полином определён на . Публичным ключом является полином .[2]

Расширения HFE

Скрытые уравнения поля имеют четыре основных модификации: +, -, v и f, и их можно комбинировать по-разному. Основной принцип заключается в следующем[2]:

  1. Модификация «+» состоит из линейного комбинирования публичных уравнений с некоторыми случайными уравнениями.
  2. Модификация «-» появился благодаря Ади-Шамиру и удаляет избыточность « » из публичных уравнений.
  3. Модификация «f» состоит из фиксации некоторых входных переменных открытого ключа.
  4. Модификация «v» определяется как сложная конструкция, такая что обратная функция может быть найдена только в том случае, если некоторые v переменных фиксированы. Эта идея принадлежит Жаку Патарину.

Атаки на криптосистемы HFE

Две самые известные атаки на систему скрытых уравнений поля[4]:

  1. Получение закрытого ключа (Шамир-Кипнис): ключевым моментом этой атаки является восстановление закрытого ключа как разреженных одномерных многочленов над полем расширений . Атака работает только для базовой системы скрытых уравнений поля и не работает для всех её вариаций.
  2. Атака, основанная на алгоритме Грёбнера (разработана Жаном-Чарльзом Фужером): идея атаки заключается в использовании быстрого алгоритма для вычисления базиса Грёбнера системы полиномиальных уравнений. Фужер взломал HFE в рамках the HFE Challenge 1 за 96 часов в 2002 году. В 2003 году Фужер вместе с Жу работали над безопасностью HFE.

Примечания

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии