WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Поверхностный эффект, скин-эффект — эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое.

Объяснение поверхностного эффекта

Физическая картина возникновения

Физическая картина возникновения скин-эффекта.

Рассмотрим цилиндрический проводник, по которому течёт ток. Вокруг проводника с током имеется магнитное поле, силовые линии которого являются концентрическими окружностями с центром на оси проводника. В результате увеличения силы тока возрастает индукция магнитного поля, а форма силовых линий при этом остаётся прежней. Поэтому в каждой точке внутри проводника производная направлена по касательной к линии индукции магнитного поля и, следовательно, линии также являются окружностями, совпадающими с линиями индукции магнитного поля. Изменяющееся магнитное поле по закону электромагнитной индукции

создаёт электрическое индукционное поле, силовые линии которого представляют замкнутые кривые вокруг линии индукции магнитного поля. Вектор напряжённости индукционного поля в более близких к оси проводника областях направлен противоположно вектору напряжённости электрического поля, создающего ток, а в более дальних — совпадает с ним. В результате плотность тока уменьшается в приосевых областях и увеличивается вблизи поверхности проводника, то есть возникает скин-эффект.

Уравнение, описывающее скин-эффект

Исходим из уравнения Максвелла,

и выражения для по закону Ома:

Дифференцируя обе части полученного уравнения по времени, находим:

.

Поскольку

и

окончательно получаем:

.
Скин-эффект в бесконечном проводнике с плоской границей.

Для упрощения решения предположим, что ток течёт по однородному бесконечному проводнику, занимающему полупространство y>0 вдоль оси X. Поверхностью проводника является плоскость Y=0. Таким образом,

,
.

Тогда

.

В этом уравнении все величины гармонически зависят от t, и можно положить:

.

Подставим это в наше уравнение и получим уравнение для :

.

Общее решение этого уравнения таково:

.

Учитывая, что , где , находим

.

При удалении от поверхности проводника ( ) второе слагаемое неограниченно возрастает, что является физически недопустимой ситуацией. Следовательно, и в качестве физически приемлемого решения остаётся только первое слагаемое. Тогда решение задачии имеет вид:

.

Взяв действительную часть от этого выражения и перейдя с помощью соотношения к плотности тока, получим

.

Принимая во внимание, что  — амплитуда плотности тока на поверхности проводника, приходим к следующему распределению объёмной плотности тока в проводнике:

.

Толщина скин-слоя

Объёмная плотность тока максимальна у поверхности проводника. При удалении от поверхности она убывает экспоненциально и на глубине становится меньше в е раз. Эта глубина называется толщиной скин-слоя и на основании полученного выше равна

.

Очевидно, что при достаточно большой частоте толщина скин-слоя может быть очень малой. Также из экспоненциального убывания плотности тока следует, что практически весь ток сосредоточен в слое толщиной в несколько , так, уменьшение плотности тока в 100 раз происходит на глубине , если общая толщина проводника многократно превышает толщину скин-слоя. В качестве примера приведём зависимость глубины скин-слоя от частоты для медного проводника:

Частота Примечания
50 Гц9,34 мм 50 Гц — частота электросети в большинстве стран Евразии и Африки
60 Гц8,53 мм 60 Гц — частота электросети в Северной, Центральной и частично Южной Америке
10 кГц0,66 мм
100 кГц0,21 мм
500 кГц0,095 мм
1 МГц0,067 мм
10 МГц0,021 мм

Если проводник имеет ферромагнитные свойства, то толщина скин-слоя будет во много раз меньше. Например, для стали ( =1000) =0.74 мм. Это имеет значение, например, при электрификации железных дорог, поскольку там стальные рельсы используются в качестве обратного провода.

Для расчёта толщины скин-слоя в металле (приближённо) можно использовать следующие эмпирические формулы:

.

Здесь = 8,85419⋅10−12 Ф/м — электрическая постоянная,  — удельное сопротивление, c — скорость света,  — относительная магнитная проницаемость (близка к единице для пара- и диамагнетиков — меди, серебра, и т. п.), . Все величины выражены в системе СИ.

,

 — удельное сопротивление,  — относительная магнитная проницаемость,  — частота.

Аномальный скин-эффект

Изложенная теория справедлива лишь при условии, что толщина скин-слоя много больше средней длины свободного пробега электронов, так как мы предполагаем, что при своём движении электрон непрерывно теряет энергию на преодоление омического сопротивления проводника, в результате чего происходит выделение джоулевой теплоты. Такое соотношение справедливо в весьма широких пределах, однако даже при комнатной температуре длина свободного пробега электрона для металлов сопоставима с глубиной скин-слоя - что говорит об аномальном характере эффекта. При очень низкой температуре ситуация только усугубляется[1]: проводимость сильно повышается, а следовательно, увеличивается длина свободного пробега и уменьшается толщина скин-слоя. При этих условиях механизм, приводящий к образованию скин-эффекта, уже не действует. Эффективная толщина слоя, в котором сосредоточен ток, изменяется. Такое явление называется аномальным скин-эффектом.

Применение

На скин-эффекте основано действие взрывомагнитных генераторов (ВМГ), взрывомагнитных генераторов частоты (ВМГЧ) и в частности ударно-волновых излучателей (УВИ).

Благодаря скин-эффекту на высоких частотах теплота выделяется преимущественно в поверхностном слое. Это позволяет раскалить проводник в тонком поверхностном слое без существенного изменения температуры внутренних областей. Данное явление используется в важном, с промышленной точки зрения, методе поверхностной закалки металлов.

Учёт эффекта в технике и борьба с ним

Скин-эффект проявляется всё более явно с увеличением частоты переменного тока, что заставляет учитывать его при конструировании и расчётах электрических схем, работающих с переменным и импульсным током. В связи с тем, что ток высокой частоты течёт по тонкому поверхностному слою проводника, активное сопротивление проводника значительно возрастает, что приводит к быстрому затуханию колебаний высокой частоты. Скин-эффект значительно влияет на характеристики катушек индуктивности и колебательных контуров, такие как добротность, на затухание в линиях передачи, на характеристики фильтров, на расчёты тепловых потерь и КПД, на выбор сечений проводников.

Для уменьшения влияния скин-эффекта применяют проводники различного сечения: плоские (в виде лент), трубчатые (полые внутри), наносят на поверхность проводника слой металла с более низким удельным сопротивлением. Серебро обладает наибольшей удельной проводимостью среди всех металлов, и тонкий его слой, в котором из-за скин-эффекта и протекает бо́льшая часть тока, оказывает заметное влияние (до 10%) на активное сопротивление проводника. Кроме того, слой сульфида, образующийся на поверхности серебра, не проводит ток и не участвует в скин-эффекте, в отличие от слоя окиси-закиси на поверхности меди, обладающего заметной проводимостью, вдобавок ещё и со свойствами полупроводника, и вносящего дополнительные потери на высоких частотах. Также применяется и покрытие золотом, у которого слой окислов отсутствует вовсе. Напротив, покрытие никелем, оловом или оловянно-свинцовым припоем способно значительно, в несколько раз увеличить сопротивление медных проводников на высоких частотах.

Так, в ВЧ аппаратуре используют катушки индуктивности из посеребрённого провода, серебрят печатные и проволочные проводники, поверхности экранов и обкладки конденсаторов, в высоковольтных линиях электропередач применяют провод в медной либо алюминиевой оболочке со стальным сердечником, в высокомощных генераторах переменного тока обмотка изготавливается из трубок, по которым для охлаждения циркулирует водород или дистиллированная вода. Также с целью подавления скин-эффекта используют систему из нескольких переплетённых и изолированных проводов — литцендрат. При передаче больших мощностей на значительные расстояние применяются линии постоянного тока — HVDC, который не подвержен воздействию скин-эффекта.

Покрытие серебром также применяется в сверхвысокочастотном оборудовании, использующем колебательные контуры особой формы: объёмные резонаторы и специфические линии передач — волноводы. Кроме того, на таких частотах особое внимание приходится уделять снижению шероховатости поверхности с целью уменьшения длины пути протекания тока.

Примечания

  1. Сивухин Д. В. Общий курс физики. Том 4. Оптика. — 1980. — С. 454.

Литература

  • А. Н. Матвеев. Параграф 53 // Электричество и магнетизм. М.: Высшая школа, 1983. — 463 с.
  • A. A. Власов. Глава VI. Параграф 5 // Макроскопическая электродинамика. — 2-е изд.. М.: Наука, 2005.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии