Свойства
- Серединные перпендикуляры к сторонам треугольника (или другого описываемого окружностью многоугольника) пересекаются в одной точке — центре описанной окружности. У остроугольного треугольника эта точка лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы.
- Любая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
- Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
- В равнобедренном треугольнике высота, биссектриса и медиана, проведенные из вершины угла с равными сторонами, совпадают и являются серединным перпендикуляром, проведённым к основанию треугольника, а два других серединных перпендикуляра равны между собой.
- Отрезки серединных перпендикуляров к сторонам треугольника, заключённые внутри него, можно найти по следующим формулам:[1]
- где нижний индекс обозначает сторону, к которой проведён перпендикуляр,
— площадь треугольника, а также предполагается, что стороны связаны неравенствами
- Если стороны треугольника удовлетворяют неравенствам
, тогда справедливы неравенства[1]:
и
Иными словами, у треугольника наименьший серединный перпендикуляр относится к среднему отрезку.
Вариации и обобщения
- Окружность Аполлония — геометрическое место точек плоскости, отношение расстояний от которых до двух заданных точек — величина постоянная.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .