WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Ра́дио (лат. radiare, radio — испускать, облучать, излучать во все стороны; radius — луч) — разновидность беспроводной передачи информации, при которой в качестве носителя информации используются радиоволны, свободно распространяемые в пространстве.

Термин «радио» впервые ввел в обращение английский физик-химик Уильям Крукс (William Crookes) в 1873 году (для объяснения результатов некоторых химических опытов), т.е. почти за 20 лет до изобретения радио.

Сам Крукс не проводил экспериментов по технике передачи и приема электромагнитных волн, но он был писателем-фантастом допускавшим «бесконтактную биологическую связь между головами людей» и публиковал свои статьи в журналах. Так в 1892 году в статье «Некоторые возможности применения электричества» английского журнала общего профиля, описывая воображаемую приёмо-передающую установку, он широко использовал понятие «радио». Другие заявленные по тексту термины, такие как «генерирование», «диапазон», «чувствительность», «избирательность» и прочие, также стали потом общеупотребительными. Удивительный пример научного предсказания!

При всем при этом, термин «радио» вначале не был популярен. Учёные и изобретатели примерно до 1910 года использовали термин «беспроводная связь», ведь в те годы радио было лишь альтернативой проволочного телеграфа.

Аппаратное помещение радиовещательной станции, 1927 г.

Принцип работы

На передающей стороне (в радиопередатчике) формируется высокочастотный сигнал определённой частоты (несущий сигнал, «несущая частота»). На него накладывается информационный сигнал, который нужно передать (звук, изображение и т. д.) — происходит модуляция несущей частоты информационным сигналом. Модулированный сигнал излучается передающей антенной в пространство, в виде радиоволн.

На приёмной стороне — радиоволны наводят модулированный сигнал в приёмной антенне, откуда он поступает в радиоприёмник. Здесь система фильтров выделяет (из множества наведённых в антенне токов: от разных радиопередатчиков и от других источников радиоволн) сигнал с определённой несущей частотой, а детектор — выделяет из него модулирующий информационный (полезный) сигнал. Получаемый сигнал может несколько отличаться от передаваемого радиопередатчиком, вследствие влияния разнообразных помех.

Первоначально, передаваемый радиосигнал не нёс в себе полезной информации. Первым, догадавшимся промодулировать радиосигнал, был канадский изобретатель Реджинальд Фессенден , который включил угольный микрофон в разрыв провода антенны искрового передатчика. 23 декабря 1900 года Фессенден провёл успешную передачу речи на расстояние 1 миля, которая, по сути, была первым в мире сеансом звуковой радиопередачи.

Так появилась амплитудная модуляция. Звук был сильно искажённым и непригодным для практического применения, но эта передача показала, что после технических доработок вскоре будет возможно передавать звук с помощью радиосигнала. В дальнейших экспериментах, в качестве источника радиосигнала Фессенден начал использовать альтернаторы – машинные (вращающиеся) генераторы переменного тока, а также построил антенну высотой 128 м!

Частотные диапазоны

  • Низкие частоты (километровые волны) — f = 30—300 кГц (λ = 1—10 км).

В практике радиовещания и телевидения используется упрощённая классификация радиодиапазонов:

  • Сверхдлинные волны (СДВ) — мириаметровые волны;
  • Длинные волны (ДВ) — километровые волны;
  • Средние волны (СВ) — гектометровые волны;
  • Короткие волны (КВ) — декаметровые волны;
  • Ультракороткие волны (УКВ) — высокочастотные волны, длина волны которых меньше 10 м.

В зависимости от диапазона, радиоволны имеют свои особенности и законы распространения:

  • ДВ сильно поглощаются ионосферой; основное значение имеют приземные волны, которые распространяются, огибая Землю. Их интенсивность, по мере удаления от передатчика, уменьшается сравнительно быстро;
  • СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной; вечером — хорошо отражаются от ионосферы, и район действия определяется отражённой волной;
  • КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т. н. зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц); ночью — более длинные (3 МГц). Короткие волны могут распространяться на больши́е расстояния, при малой мощности передатчика;
  • УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой; однако, при определённых условиях, способны огибать земной шар из-за разности плотностей воздуха в разных слоях атмосферы. Легко огибают препятствия и имеют высокую проникающую способность;
  • СВЧ не огибают препятствия, распространяются в пределах прямой видимости. Используются в «Wi-Fi», сотовой связи и т. д.;
  • КВЧ не огибают препятствия, отражаются большинством препятствий, распространяются в пределах прямой видимости. Используются для спутниковой связи;
  • Гипервысокие частоты не огибают препятствия, отражаются подобно свету, распространяются в пределах прямой видимости. Использование ограничено.

Распространение радиоволн

Радиоволны распространяются в вакууме и в атмосфере, земная твердь и вода для них непрозрачны. Однако благодаря эффектам дифракции и отражения возможна связь между точками земной поверхности, не имеющими прямой видимости, в частности, находящимися на большом расстоянии.

Распространение радиоволн от источника к приёмнику может происходить несколькими путями одновременно — такое распространение называется многолучёвостью. Вследствие многолучёвости и изменений параметров среды возникают замирания (англ. fading) — изменение уровня принимаемого сигнала во времени. При многолучёвости изменение уровня сигнала происходит вследствие интерференции, то есть в точке приёма электромагнитное поле представляет собой «сумму» радиоволн диапазона, смещённых во времени.

Особые эффекты

  • Эффект антиподов: радиосигнал может хорошо приниматься в точке земной поверхности, приблизительно противоположной передатчику. Описанные примеры:
  • Эхо от волны, обошедшей Землю (фиксированная задержка);
  • Редко наблюдаемый и малоизученный эффект «LDE» (англ. long delayed echo — эхо с большой задержкой; Мировое эхо);
  • Эффект Доплера: изменение частоты (длины волны) принимаемого сигнала, в зависимости от скорости приближения (или удаления) передатчика сигнала относительно приёмника: при их сближении — частота увеличивается, при взаимном удалении — уменьшается;
  • Люксембург—Горьковский эффект, связанный с изменениями несущей частоты вследствие нелинейных эффектов при распространении радиоволн в ионосфере[1].

Применение

Радиовещание

Само слово «радиовещание» ввёл основатель и преподаватель колледжа беспроводной телеграфии и техники в Сан-Хосе Ч. Херолд. Он построил искровой передатчик, через который начал транслировать речевые и музыкальные программы, которые принимали в основном бывшие и действующие ученики колледжа. Херолд родился и вырос в фермерской среде, где посев семян на поле в разброс назывался «broadcasting». Антенна передатчика имела круговую диаграмму направленности, т.е. излучала радиоволны во все стороны – то по аналогии с сельскохозяйственным определением, Херолд стал именовать свои трансляции как «бродкастинг» (радиопередача, радиовещание).

Гражданская радиосвязь

Решениями ГКРЧ России (Государственной комиссии по радиочастотам), для гражданской связи физическими и юридическими лицами, на территории Российской Федерации выделены 3 группы частот:
  • 27 МГц (Си-Би, «Citizen’s Band», гражданский диапазон) — с разрешённой выходной мощностью передатчика до 10 Вт. Автомобильные рации диапазона 27 МГц широко используются для организации радиосвязи в службах такси, для связи водителей-дальнобойщиков;
  • 433 МГц (LPD, «Low Power Device») — выделено 69 каналов, для раций с выходной мощностью передатчика не более 0,01 Вт;
  • 446 МГц (PMR, «Personal Mobile Radio») — выделено 8 каналов, для раций с выходной мощностью передатчика не более 0,5 Вт.

Любительская радиосвязь

Любительская коротковолновая радиостанция. Внизу — приёмопередатчик (трансивер), на нём — согласующее устройство с измерителем КСВ

Радиолюбительская связь — многогранное техническое хобби, выражающееся в проведении радиосвязей в отведённых для этой цели диапазонах радиочастот. Данное хобби может иметь направленность в сторону той или иной составляющей; например:

  • Конструирование и постройка любительской приёмно-передающей аппаратуры и антенн;
  • Участие в различных соревнованиях по радиосвязи (радиоспорт);
  • Коллекционирование карточек-квитанций, высылаемых в подтверждение проведённых радиосвязей и/или дипломов, выдаваемых за проведение тех или иных связей;
  • Поиск и проведение радиосвязей с радиолюбительскими станциями, работающими из отдалённых мест или из мест, в которых крайне редко работают любительские радиостанции (DXing);
  • Работа какими-то определёнными видами излучения (телеграфия, телефония с однополосной или частотной модуляцией, цифровые виды связи);
  • Связь на УКВ с использованием отражения радиоволн от Луны (EME), от зон полярного сияния («Аврора»), от метеорных потоков, с ретрансляцией через радиолюбительские ИСЗ;
  • Работа малой мощностью передатчика (QRP), на простейшей аппаратуре;
  • Участие в радиоэкспедициях — выход в эфир из отдалённых и труднодоступных мест и территорий планеты, где нет активных радиолюбителей.

В компьютерных сетях AMPRNet соединение обеспечивается любительскими радиостанциями.

История и изобретение радио

Никола Тесла на лекции демонстрирует принципы радиосвязи, 1891 г.
Приёмник Маркони с когерером

Первый патент на беспроводную связь получил в 1872 году американский радиолюбитель, стоматолог по профессии Малон Лумис, заявивший в 1866 году о том, что он открыл способ беспроволочной связи; в США изобретателем радио считают Дэвида Хьюза (1878), а также Томаса Эдисона (1875; патент 1885) и Николу Теслу (патент на передающее устройство с резонанс-трансформатором в 1891 году[2]); в Германии — Генриха Герца (1888); во Франции — Эдуарда Бранли (1890); в США и ряде балканских стран — Николу Теслу (1891); в Бразилии — Ланделя де Муру (1893—1894); в Англии — Оливера Джозефа Лоджа (1894); в Индии — Джагадиша Чандру Боше (1894 или 1895); в России — А. С. Попова (1895) и Якова Наркевича-Иодко (1890).

Создателем первой успешной системы обмена информацией с помощью радиоволн (радиотелеграфии) на западе считается итальянский инженер Гульельмо Маркони (1895)[3][4][5].

В СССР и в бывших союзных республиках изобретателем радиотелеграфии считается А. С. Попов[4][6]. В опытах по радиосвязи, проведённых в физическом кабинете, а затем в саду Минного офицерского класса, прибор А. С. Попова обнаруживал излучение радиосигналов, посылаемых передатчиком, на расстоянии до 60 м. На заседании Русского физико-химического общества в Петербурге 25 апреля (7 мая) 1895 года А. С. Попов продемонстрировал, как указано в протоколе заседания, «прибор, предназначенный для показывания быстрых колебаний в атмосферном электричестве»[7]. В СССР, с 1945 года, 7 мая стали отмечать как День радио.

Приёмник Попова

Далее радиосвязь была установлена на расстоянии 250 м. Работая над своим изобретением, Попов вскоре добился дальности связи более 600 м. Затем на манёврах Черноморского флота в 1899 году учёный установил радиосвязь на расстоянии свыше 20 км, а в 1901 году дальность радиосвязи была уже 150 км. Важную роль в этом сыграла новая конструкция передатчика: искровой промежуток был размещён в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс. Существенно изменились и способы регистрации сигнала: параллельно звонку был включён телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899 году была обнаружена возможность приёма сигналов с помощью телефона. В начале 1900 года радиосвязь была успешно использована во время спасательных работ в Финском заливе. При участии А. С. Попова началось внедрение радиосвязи на флоте и в армии России.

Во Франции изобретателем беспроволочной телеграфии долгое время считался создатель когерера (трубки Бранли) (1890) Эдуар Бранли[8][9].

В Индии радиопередачу в миллиметровом диапазоне в ноябре 1894 года демонстрирует Джагадиш Чандра Боше[10][11].

В Великобритании, в 1894 году первым демонстрирует радиопередачу и радиоприём на расстояние 40 метров изобретатель когерера (трубка Бранли со встряхивателем) Оливер Джозеф Лодж. Первым же изобретателем способов передачи и приёма электромагнитных волн (которые длительное время назывались «Волнами Герца — Hertzian Waves»), является сам их первооткрыватель, немецкий учёный Генрих Герц (1888).

Основные этапы истории изобретения радио, с точки зрения развития теории и практики радиосвязи, выглядят следующим образом:

  • 1820 — датский учёный, физик Ганс Кристиан Эрстед продемонстрировал, что провод с током отклоняет намагниченную стрелку компаса.
  • 1829 — американский физик Джозеф Генри в экспериментах с лейденскими банками обнаружил, что их электрические разряды вызывают намагничивание на расстоянии металлических иголок.
  • 1831 — английский физико-химик Майкл Фарадей открыл явление электромагнитной индукции.
  • 1837 — немецкий физик и астроном Карл Огаст фон Штайнхайль, исследуя свойства двухпроводного телеграфного аппарата, установил, что мог бы устранить один из проводов и использовать единственный провод для телеграфной коммуникации. Это привело его к предположению, что можно устранить оба провода — и передавать сигналы телеграфа через землю, без проводов, соединяющих станции.
  • 1845 — Майкл Фарадей ввёл понятие электромагнитного поля.
  • 1854 — шотландец Джеймс Боумен Линдси получил патент для системы беспроводной телеграфии через воду.
  • 1859 — немецкий физик Беренд Феддерсен экспериментально доказал, что разряды лейденских банок запускают эфирные колебательные процессы.
  • 1860—1865 — английский физик Джеймс Кларк Максвелл создал теорию электромагнитного поля.
  • 1866 — Малон Лумис заявил о том, что открыл способ беспроволочной связи. Связь осуществлялась при помощи двух электрических проводов, поднятых двумя воздушными змеями: один из них (с размыкателем) был антенной радиопередатчика, второй — антенной радиоприёмника. При размыкании от земли цепи одного провода — отклонялась стрелка гальванометра в цепи другого провода.
  • 1868 — Малон Лумис заявил, что повторил свои эксперименты перед представителями Конгресса США, передав сигналы на расстояние 14—18 миль.
  • 1872 — Уильяму Генри Варду 30 апреля выдан патент США № 126356 под названием «Усовершенствования для того, чтобы собрать электричество для того, чтобы телеграфировать». Согласно патенту — «электрический слой в атмосфере» мог нести сигналы как телеграфный провод.
  • 1872 — 30 июля Малон Лумис получил патент США 129971 «Улучшение в телеграфии» на беспроводную связь. Хотя президент Грант подписал закон о финансировании опытов Лумиса, финансирование так и не было открыто[12]. Никаких достоверных данных о характере экспериментов Лумиса, равно как и чертежей его аппаратов, не сохранилось. Американский патент также не содержит детального описания устройств, использованных Лумисом.
  • 1878—1879 — английский и американский изобретатель Дэвид Хьюз при работе с индукционной катушкой продемонстрировал возможность обнаружить сигналы на расстоянии более чем несколько сотен ярдов. Он продемонстрировал своё открытие Королевскому обществу в 1880 г., однако коллеги убедили его, что речь идёт лишь об индукции[13][14];
  • 1879 — в конце октября 1879 г. Дэвид Эдвард Хьюз пришёл к выводу, что из передающей схемы можно убрать индукционную катушку, поскольку установил, что любая электрическая искра обусловливает звук в телефоне. Далее — Хьюз поместил передатчик и приёмник в разные комнаты и уже не соединял приборы. К приёмнику, на расстоянии 6 футов от передатчика, был подсоединён провод — одна из первых антенн. К слову, одна из первых антенн фигурировала ещё в опытах Луиджи Гальвани (1737—1798), в которых детектором служил свежий препарат лягушки.
  • 1882 — март, профессор физики Тафтского университета (Бостон, США) Амос Долбер получил американский патент на беспроводной телеграф. Обнаружил, что можно использовать в качестве проводника землю, и что если разорвать провод между передатчиком и приёмником, то связь осуществима, хотя и с потерей качества звука. Утверждал, что добился передачи сигналов на расстояние 13 миль.
  • 1883 — ирландский профессор Джордж Фрэнсис Фицджеральд предложил использовать эфирные колебания в качестве источника максвелловских волн. Однако он не представлял, как эти волны зарегистрировать, а потому ограничился чистой теорией.
  • 1885 — американский изобретатель Томас Алва Эдисон 23 мая подал патентную заявку № 166455 (утверждена 29 декабря 1891 г., патент США № 465971) на «Способ передачи электрических сигналов». Во время Большой Снежной бури 1888 г. в США эта система передачи использовалась, чтобы послать и получить беспроводные сообщения от поездов, занесённых снегом (возможно, что это первое успешное использование беспроводной телеграфии, чтобы послать сигналы бедствия: выведенные из строя поезда смогли поддержать связь через систему телеграфа Т. А. Эдисона).
  • 1885—1892 — фермер из Кентукки, США, Натан Стабблефилд (Nathan Stubblefield), изобрёл устройство, которое базировалось на звуковой частотной индукции. Для передачи сигнала использовалась звуковая проводимость земли, а не радиочастота.
  • 1886—1888 — немецкий физик Генрих Герц доказал существование электромагнитных волн, предсказанных Максвеллом математическим путём (опыты при различных взаимных положениях генератора и приёмника). Герц с помощью устройства, которое он назвал вибратором, осуществил успешные опыты по передаче и приёму электромагнитных сигналов на расстояние и без проводов.
  • 1890 — французский физик и инженер Эдуар Бранли изобрёл прибор для регистрации электромагнитных волн, названный им радиокондуктор (позднее — когерер). В своих опытах Бранли использует антенны в виде отрезков проволоки. Результаты опытов Эдуара Бранли были опубликованы в «Бюллетене Международного общества электриков» и отчётах Французской Академии Наук.
  • 1890 — российский учёный Яков Оттонович Наркевич-Иодко применил для регистрации грозовых разрядов прибор, имеющий основные компоненты радиоприёмных устройств — антенну и заземление, а также телефонную трубку. Прибор позволял регистрировать электрические разряды в атмосфере на расстоянии до 100 км.
  • 1891—1892 — главный инженер британского почтового ведомства Уильям Прис (William Preece) успешно экспериментировал с индукционной передачей сигналов азбукой Морзе между прибрежными приёмно-передающими станциями (в том числе через Бристольский залив), разнесёнными на несколько километров (до 5 км).
  • 1891 — Никола Тесла (Сент-Луис, штат Миссури, США) в ходе лекций публично описал принципы передачи радиосигнала на большие расстояния.
  • 1892 — англичанин Уильям Крукс (William Crookes) впервые системно описал принципы передачи информации с помощью электромагнитных волн.
  • 1893 — Тесла патентует радиопередатчик и изобретает мачтовую антенну, с помощью которой в 1895 г. передаёт радиосигналы на расстояние 30 миль[15].
  • Между 1893 и 1894 — Роберто Ланделл де Мора, бразильский священник и учёный, провёл эксперименты по передаче радиосигнала. Их результаты он не оглашал до 1900 г., но впоследствии получил бразильский патент.
  • 1894 — профессор Эрих Ратенау провёл под Берлином эксперименты по передаче сигналов с помощью низкочастотных электромагнитных волн.
  • 1894 — Гульельмо Маркони, под влиянием идей профессора Аугусто Риги, высказанных в некрологе Генриху Герцу, начинает эксперименты по радиотелеграфии (первоначально — с помощью вибратора Герца и когерера Бранли)[16]. Однако никаких письменных свидетельств того времени, которые могли бы подтвердить опыты Маркони проводимые в 1894 году, не имеется.
  • 1894 — первая публичная демонстрация опытов по беспроводной телеграфии британским физиком Оливером Лоджем и Александром Мирхедом на лекции в театре Музея естественной истории Оксфордского университета. При демонстрации — сигнал был отправлен из лаборатории в соседнем Кларендоновском корпусе и принят прибором в театре на расстоянии 40 м. Изобретённый Лоджем «прибор для регистрации приёма электромагнитных волн» содержал радиокондуктор — «трубку Бранли» (которой Лодж дал название когерер) со встряхивателем, источник тока и гальванометр. Для встряхивания когерера, с целью периодического восстановления его чувствительности к «волнам Герца», впоследствии использовался или звонок, или заводной пружинный механизм с молоточком-зацепом.
  • Ноябрь 1894 — публичная демонстрация опытов по беспроводной передаче сигнала в миллиметровом диапазоне сэром Джагадишем Чандра Боше в Ратуше города Калькутты. Кроме того, Боше изобрёл ртутный когерер, не требующий при работе физического встряхивания
  • 1895 — английский физик Эрнест Резерфорд опубликовал результаты своих экспериментов по детектированию радиоволн на расстоянии в три четверти мили от их источника. Для приёма радиоволн, Резерфорд дополнил резонатор Герца катушкой из тонкой проволоки с намагниченной стальной иглой внутри. Под действием радиоволновых импульсов — игла размагничивалась, что и показывал магнитометр.
  • 7 мая 1895 — на заседании Русского физико-химического общества в Санкт-Петербурге, Александр Степанович Попов читает лекцию «Об отношении металлических порошков к электрическим колебаниям», на которой, воспроизводя опыты Лоджа c электромагнитными сигналами, демонстрирует прибор, схожий в общих чертах с тем, который ранее использовался Лоджем. При этом Попов внёс в конструкцию усовершенствования. Отличительной особенностью прибора Попова был молоточек, встряхивавший когерер (трубку Бранли), который работал не от часового механизма, как ранее, а от самого принимаемого радиоимпульса[17]. Кроме того, было введено реле, повышающее чувствительность и стабильность работы прибора. Строго говоря, прибор Попова следует называть прибором для обнаружения и регистрирования электрических колебаний с автоматическим встряхиванием когерера. В мае 1895 года прибор был приспособлен для улавливания атмосферных электромагнитных волн на метеостанции Лесного института. Название прибора «разрядоотметчик» (впоследствии, «грозоотметчик») дал товарищ и коллега А. С. Попова по Русскому физико-химическому обществу, основатель кафедры физики Лесного института Д. А. Лачинов, который в июле 1895 года во 2-м издании своего курса «Основ метеорологии и климатологии» впервые изложил принцип действия «разрядоотметчика Попова» — это и есть первое описание прототипа[7][18][19].
  • Весна 1895 г. — Маркони добивается передачи радиосигнала на несколько сотен метров[2].
  • Сентябрь 1895 — Попов присоединил к приёмнику телеграфный аппарат и получил телеграфную запись принимаемых радиосигналов.
  • 2 июня 1896 г. — Маркони подаёт заявку на патент.
  • 2 сентября 1896 — Маркони демонстрирует своё изобретение на равнине Солсбери, передав радиограммы на расстояние 3 км[20].
  • 1897 — Оливер Лодж изобрёл принцип настройки на резонансную частоту[21]
  • 1897 — Французский предприниматель Эжен Дюкрете строит экспериментальный приёмник беспроволочной телеграфии по чертежам, предоставленным А. С. Поповым.
  • 24 апреля 1897 — Попов на заседании Русского физико-химического общества, используя вибратор Герца и приёмник собственной конструкции, передаёт на расстояние 250 м первую в России радиограмму: «Генрих Герц».
  • 2 июля 1897 — Маркони получает британский патент № 12039 «Усовершенствования в передаче электрических импульсов и сигналов в передающем аппарате». В общих чертах приёмник Маркони воспроизводил приёмник Попова, (с некоторыми усовершенствованиями)[17], а его передатчик — вибратор Герца с усовершенствованиями Риги. Принципиально новым было то, что приёмник был изначально подключён к телеграфному аппарату, а передатчик соединён с ключом Морзе, что и сделало возможным радиотелеграфическую связь. Маркони использовал антенны одной длины для приёмника и передатчика, что позволило резко повысить мощность передатчика; кроме того детектор Маркони был гораздо чувствительнее детектора Попова, что признавал и сам Попов.[22]
  • 6 июля 1897 — Маркони на итальянской военно-морской базе Специя передаёт фразу «Viva l’Italia» из-за линии горизонта — на расстояние 18 км.[23]
  • Ноябрь 1897 — строительство Маркони первой постоянной радиостанции на о. Уайт, соединённой с Бормотом (23 км.)[24]
  • Январь 1898 — Первое практическое применение радио: Маркони передаёт (за обрывом телеграфных проводов из-за снежной бури) сообщения журналистов из Уэльса о смертельной болезни Уильяма Гладстона[16][25].
  • Май 1898 — Маркони впервые применяет систему настройки.
  • 1898 — Маркони открывает первый в Великобритании «завод беспроволочного телеграфа» в Челмсфорде, Англия, на котором работают 50 человек.
  • Конец 1898 — Эжен Дюкретэ (Париж) приступает к мелкосерийному выпуску приёмников системы Попова[26]. Согласно мемуарам Дюкретэ, чертежи устройств он получил от А. С. Попова благодаря интенсивной переписке.
  • 1898 — присуждение А. С. Попову премии Русского Технического Общества в 1898 г. «за изобретение приёмника электромагнитных колебаний и приборов для телеграфирования без проводов»[27].
  • 3 марта 1899 — радиосвязь впервые в мире была успешно использована в морской спасательной операции: с помощью радиотелеграфа спасены команда и пассажиры потерпевшего кораблекрушение парохода «Масенс» (Mathens)[21][24].
  • Май 1899 — помощники Попова П. Н. Рыбкин и Д. С. Троицкий обнаружили детекторный эффект когерера. На основании этого эффекта, Попов модернизировал свой приёмник для приёма сигналов на головные телефоны оператора и запатентовал как «телефонный приёмник депеш».
  • 1899 — сэр Джагдиш Чандра Боз (Калькутта) изобрёл ртутный когерер.
  • 1900 — радиосвязь была успешно использована в морской спасательной операции в России. По инструкциям Попова была построена радиостанция на острове Гогланд, возле которого находился севший на мель броненосец береговой обороны «Генерал-адмирал Апраксин». Радиотелеграфные сообщения на радиостанцию острова Гогланд приходили с находящейся в 25 милях передающей станции Российской Военно-Морской базы в Котке, которая телеграфной линией была связана с Адмиралтейством Санкт-Петербурга. Приборы, использовавшиеся в спасательной операции, были изготовлены в мастерских Эжена Дюкретэ. В результате обмена радиограммами — ледоколом «Ермак» были также спасены финские рыбаки с оторванной льдины в Финском заливе[28][29].
  • 1900 — Маркони получает патент № 7777 на систему настройки радио («Oscillating Sintonic Circuit»).
  • 1900 — Работы Попова отмечены Большой золотой медалью и Дипломом на международной электротехнической выставке в Париже.[15]
  • 12 декабря 1901 — Маркони провёл первый сеанс трансатлантической радиосвязи между Англией и Ньюфаундлендом на расстояние 3200 км (передал букву «S» азбуки Морзе). До того это считалось принципиально невозможным.
  • 1905 — Маркони получает патент на направленную передачу сигналов.
  • 1906 — Реджинальд Фессенден и Ли де Форест обнаруживают возможность амплитудной модуляции радиосигнала низкочастотным сигналом, что позволило передавать в эфире человеческую речь.
  • 1909 — Присуждение Маркони и Ф.Брауну Нобелевской премии по физике «в знак признания их заслуг в развитии беспроволочной телеграфии»[30].
  • 1924 — Начало радиовещания в СССР.
  • 1933 — Эдвин Армстронг предложил использовать для радиовещания широкополосную частотную модуляцию (ЧМ), получив к этому времени четыре патента по результатам своих исследований.
  • 1946 — Начало МВ ЧМ[31] радиовещания в СССР[32].
  • 1995 — Первое в мире цифровое радиовещание в Норвегии (Осло).
  • 2007 — В Европе появляется стандарт цифрового радиовещания DAB+.
  • 2017 — Окончательное отключение 13 декабря последних FM-передатчиков в Норвегии.

Изобретение радиосвязи дало начало таким научно-техническим направлениям, как радиоастрономия, радиометрология, радионавигация, радиолокация, радиоразведка, радиопротиводействие[33].

Радио послужило мощнейшим стимулом в исследовании и развитии электричества, и стало основой электроники. А электроника, в свою очередь, породила вычислительную технику.

См. также

Примечания

  1. Горелик Г. С.(1959). Колебания и волны.
  2. 1 2 Шапкин В. И. Радио: открытие и изобретение. — Москва: ДМК ПРЕСС, 2005. — 190 с., 98 ил.
  3. Guglielmo Marconi//Encyclopaediz Britannica
  4. 1 2 Aleksandr Popov//Encyclopaediz Britannica
  5. Маркони начинает и выигрывает
  6. Какое радио изобретал Маркони.
  7. 1 2 Журнал Русского физико-химического общества. Т. XXVII. Вып. 8. С. 259 — декабрь 1895.
  8. TSF : Livres anciens, rares, d’occasion sur Galaxidion (фр.)
  9. Rendons à César ce qui appartient César (фр.)
  10. Jagadish Chandra Bose: The Real Inventor of Marconi’s Wireless Receiver; Varun Aggarwal, NSIT, Delhi, India
  11. Mukherji, Visvapriya, Jagadish Chandra Bose, second edition, 1994, pp. 3-10, Builders of Modern India series, Publications Division, Ministry of Information and Broadcasting, Government of India, ISBN 81-230-0047-2
  12. Махлон Лумис Виртуальный компьютерный музей История компьютеров в СССР и за рубежом. Проверено 16 апреля 2013.
  13. http://www.ufn.ru/ufn92/ufn92_4/Russian/r924d.pdf
  14. Дэвид Эдвард Юз и открытие радиоволн Виртуальный компьютерный музей История компьютеров в СССР и за рубежом. Проверено 16 апреля 2013.
  15. 1 2 Ко дню Радио
  16. 1 2 газета «КОММЕНТАРИИ». Знать и понимать
  17. 1 2 «Кто „изобрёл“ радио?». Лев Николаевич Никольский (лауреат Государственной премии, кандидат технических наук)
  18. Лачинов Д. А. Основы метеорологии и климатологии. — СПб, 1895. С. 460.
  19. Ржонсницкий Б. Н. Дмитрий Александрович Лачинов. — М.—Л.: Госэнергоиздат, 1955
  20. Какое радио изобретал Маркони Виртуальный компьютерный музей История компьютеров в СССР и за рубежом. Проверено 16 апреля 2013.
  21. 1 2 Летопись радиотехники: 1895—1899
  22. Н. И. Чистяков. Начало радиотехники: факты и интерпретация
  23. Когда и кем было изобретено радио Виртуальный компьютерный музей История компьютеров в СССР и за рубежом. Проверено 16 апреля 2013.
  24. 1 2 Adventures in CyberSound
  25. madasafish
  26. Производство радиостанций и грозоотметчика системы А. С. Попова Виртуальный компьютерный музей История компьютеров в СССР и за рубежом. Проверено 16 апреля 2013.
  27. Н. И. Чистяков. Ошибки в изложении истории надо исправить
  28. Изобретение радио. Кто был первым? | № 3, 2006 год | Журнал «Наука и жизнь»
  29. Срок регистрации домена закончился  (недоступная ссылка с 23-05-2013 [2095 дней] история, копия)
  30. Маркони (Marconi), Гульельмо. Лауреаты Нобелевской премии. Наука и техника
  31. Миркин В. В. К истории советской радиосвязи и радиовещания в 1945—1965 гг. // Вестник Томского государственного университета. История. 2013, № 1 (21). — С. 202.
  32. Виртуальный компьютерный музей.. www.computer-museum.ru. Проверено 18 октября 2017.
  33. Из истории изобретения и начального развития радиосвязи: Сб. док. и материалов / Сост. Л. И. Золотинкина, Ю. Е. Лавренко, В. М. Пестриков; под. ред. проф. В. Н. Ушакова. — СПб.: изд-во СПбГЭТУ «ЛЭТИ» им. В. И. Ульянова (Ленина), 2008. — 288 с. — ISBN 5-7629-0932-8

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии