Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. |
Для улучшения этой статьи желательно: |
Эта статья или раздел содержит незавершённый перевод с иностранного языка. |
![]() |
![]() | |
Косметический протез в 1918. Французский инвалид, в маске предоставленной Американским Красным Крестом (American Red Cross) (слева) и без маски (справа) |
Протезирование — замена утраченных или необратимо повреждённых частей тела искусственными заменителями — протезами. Протезирование представляет собой важный этап процесса социально-трудовой реабилитации человека, утратившего конечности, или страдающего заболеваниями опорно-двигательного аппарата.
Протезированиe, является смежной дисциплиной между медициной и техникой, тесно связано с ортопедией , травматологией и восстановительной хирургией и др. Хотя протезирование как отдельная дисциплина отделилась в XIX веке, сведения о нем встречаются еще в древние времена - у греческого историка Геродота, римского историка Плиния и других.
Различают следующие основные виды протезирования:
В узком смысле протезированием считают
в том числе
В более широком смысле протезами считаются устройства которые могут быть включены в более широкую категорию медицинских изделий:
Первое упоминание о протезе встречается в Ригведе, которая сообщает, что воительница в бою потеряла ногу, и для нее изготовили железную ногу[1]. Древние египтяне были знакомы с протезированием, о чем свидетельствует мумия Нового Царства с деревянным пальцем[2]. Долгое время протезирование развивалось слабо. Знаменитые пиратские крюки и деревянные ноги — ранние формы протезов.
После развития механики, ближе к современности, стали появляться более совершенные типы протезов, хорошо имитирующие потерянную часть тела или даже способные двигаться за счёт встроенных механизмов.
Но это были лишь протезы внешних частей тела, протезы внутренних органов (например AbioCor) появились уже в век электроники, а современная медицина, возможно, вообще исключит протезирование благодаря новейшим технологиям стволовых клеток, на данный момент ещё до конца не разработанным. Помимо протезов конечностей в современной медицине распространены процедуры протезирования суставов, зубов и также косметические протезы глаз и других частей тела. Косметические протезы помогают людям общаться с лицами, которые не привыкли общаться с изуродованными людьми без излишней эмоциональности. Помимо протезирования как такового, хирурги находили различные решения частичного возвращения функциональности изуродованным конечностям. Так, немецкий врач Герман Крукенберг разработал (сразу после Первой мировой войны) руку Крукенберга — своеобразную «клешню», которая делается из концов лучевой и локтевой костей у раненых с травматической ампутацией кисти. (Krukenberg procedure)
Протезы были изобретены уже в глубокой древности. Прототип искусственных ног — деревяшка, подставка вместо потерянной нижней конечности, сохранилась до настоящего времени. С течением времени она подверглась многим изменениям, из которых упомянем о наиболее существенных. Камиллус Нюроп придумал приспособление — на нижней части деревяшки, которая при помощи полушария сделана вертящейся, чтобы избегать возможности застревания деревяшки между камнями. Для предупреждения трения культи на последнюю до вставления её в тонкую сумку из липового дерева надевается кожаный мешок, мягко набитый. Американцы в XIX в. употребляли для искусственных ног, в особенности для стопы, дерево Гикори ввиду его большей крепости[3] и всё же значительной лёгкости.
Изготовляемые в XIX веке металлические гильзы (из листового железа, нового серебра или алюминиевой бронзы) были очень легки и в то же время весьма прочны. Подбивку никогда не след. укреплять внутри гильзы, а только на культе, которую предварительно обертывали фланелевыми бинтами (сверху — вниз), затем надевали кожаную воронку, длинную и толсто набитую, после чего конец культи вставляют в гильзу таким образом, чтобы он свободно висел внутри последней, не подвергаясь никакому давлению. Только при этом условии можно были избежать раны на культе от трения. Гильзы из твердого каучука были ломки. На принципе деревяшки были основаны все усовершенствования искусственных ног, имеющие целью устранение главного недостатка деревяшки (идущий на ней при своем движении вперед должен был постоянно описывать дугу кнаружи) и сохранение формы ноги. Последнего достигнуть было легко; первое же стоило многих усилий. Американец д-р Блай (Bly) первый старался при устройстве искусственного ступневого сустава подражать природе; движения в нём совершались при посредстве шара из полированного стекла, лежащего в полости из вулканизированного каучука. Ступня соединялась с голенью четырьмя кишечными струнами, которые были прикреплены к кружку, идущему поперечно через верхнюю половину аппарата. Такие усовершенствованные суставы все же не вытеснили из употребления простые суставы на шарнирах, более безопасные и дешевые. Пфистер в Берлине вкладывается в ступневые суставы пружины из каучука цилиндрической формы; движения совершаются при посредстве крепких шарниров. К пятке прикрепляется ещё каблучок. При помощи этого механизма походка становится эластичной, бесшумной и менее утомительной, нежели при других аппаратах. Сами каучуковые пружины сохраняют годами свою эластичность без изменения. Для того, чтобы пальцы стопы при повороте не приставали к полу, пальцевая часть аппарата сделана подвижной посредством спиральной пружины и простого шарнира на подошве. Прикрепление искусственной ноги к культе или к туловищу производится при помощи поясов и ремней через плечо, смотря по привычке и упражнению, то порознь, то вместе. Применение искусственных членов не может наступить раньше образования плотного рубца, следовательно, не раньше 6-10 месяцев после операции. Личный осмотр при участии врача, личное снимание мерки со стороны техника, занимающегося изготовлением И. членов, конечно, весьма желательны; при невозможности, профессор Мозетиг рекомендует отмечать на прилагаемом схематическом рисунке необходимую для бандажиста мерку[4].
Эта статья или раздел носит выраженный рекламный характер. |
Искусственные руки в XIX в. разделялись на «рабочие руки» и «руки косметические», или предметы роскоши. Для каменщика или чернорабочего ограничивались наложением на предплечье или плечо бандажа из кожаной гильзы с арматурой, к которой прикреплялся соответствующий профессии рабочего инструмент — клещи, кольцо, крючок и т. п. Косметические искусственные руки, смотря по занятиям, образу жизни, степени образования и другим условиям, бывали более или менее сложны. Искусственная рука могла иметь форму естественной, в изящной лайковой перчатке, способная производить тонкие работы; писать и даже тасовать карты (как известная рука генерала Давыдова). Если ампутировано предплечье, т.е. уровень ампутации не достиг локтевого сустава, то при помощи искусственной руки возможно было возвратить функцию верхней конечности; но если ампутировано плечо, то работа рукой была возможна лишь через посредство объемистых, весьма сложных и требующих большого усилия аппаратов. Помимо последних, искусственные верхние конечности состояли из двух кожаных или металлических гильз для верхнего плеча и предплечья, которые над локтевым суставом были подвижно соединены в шарнирах посредством металлических шин. Кисть былa сделана из легкого дерева и неподвижно прикреплена к предплечью или же подвижна. В суставах каждого пальца находились пружины; от концов пальцев идут кишечные струны, которые соединялись позади кистевого сустава и продолжались в виде двух более крепких шнурков, причём один, пройдя по валикам через локтевой сустав, прикреплялся на верхнем плече к пружине, другой же, также двигаясь на блоке, свободно оканчивался ушком. Если желают при вытянутом плече сохранить пальцы сжатыми, то это ушко вешают на пуговку, имеющуюся на верхнем плече. При произвольном сгибании локтевого сустава пальцы смыкались в этом аппарате и совершенно закрывались, если плечо согнуто под прямым углом. Для заказов искусственных рук достаточно было указать меры длины и объёма культи, а равно и здоровой руки, и объяснить технику цели, которым они должны служить.
В СССР работы по созданию протезов верхних конечностей, управляемых биоэлектрическими сигналами от культи, были начаты в 1956 году[5]. Промышленный выпуск протезов предплечья с биоэлектрическим управлением в СССР был начат в 1961 году[6].
Примером современного бионического протеза руки, разработанного в США в 2014 году, является DEKA Arm — 3.
В 2015 году в США начались продажи недорогих протезов рук, разработанных в Иллинойсском университете в Урбане-Шампейн. Дешевизна достигается использованием 3D-печати.[7]
В 2015 компания молодых разработчиков из Новосибирска создала технологию производства роботизированного протеза кисти, который будет втрое дешевле немецкого и в семь раз дешевле английского аналога. Это стало возможно благодаря отказу от дорогостоящих материалов. Карбон и титан новосибирские разработчики заменили полимерами и более дешевыми металлическими сплавами. Кроме того, в производстве используется 3D-печать.[8]
В феврале 2015 года российская компания MaxBionic представила самый маленький бионический протез в России для детей. В марте 2015 года завершила испытания на пациенте, ожидается, что компания в октябре начнет массовые продажи своих протезов.
В мае 2015 российская компания "Моторика" прошла сертификацию функционального механического протеза кисти, с этого времени цветные протезы с различными технологичными и игровыми насадками в России устанавливаются бесплатно. В настоящее время компания также занимается разработкой дешевого биоэлектрического протеза, идет набор тестовой группы, старт продаж намечен на лето 2016.
Ученым из Технологического университета Чалмерса (Гётеборг, Швеция) совместно с биотехнологической фирмой Integrum AB удалось подключить протезную руку, созданную в рамках европейской исследовательской программы по протезированию, непосредственно к нервам и мышцам. Хирурги прикрепили протез к двум костям предплечья (лучевой и локтевой) женщины с помощью титановых имплантатов, а затем подключили 16 электродов к ее нервам и мышцам.Благодаря этому она смогла контролировать движениями руки с помощью головного мозга (мыслей). У нее получалось завязывать шнурки и набирать текст на клавиатуре. [9]
Эта статья или раздел носит выраженный рекламный характер. |
Впервые протез C-Leg был показан Otto Bock Orthopedic Industry на всемирном конференции по ортопедии в Нюрнберге в 1997 году.
C-Leg использует гидроцилиндры для управления сгибанием колена. Датчики отправляют сигналы на микропроцессор, который анализирует их и сообщает, что сопротивление должно питать цилиндры. C-Leg является аббревиатурой от 3C100, номера модели оригинального протеза, но по-прежнему применяется ко всем Otto Bock протезам коленного сустава с микропроцессорным управлением. Функции C-Leg благодаря различным технологическим устройствам объединены в компоненты протеза. C-Leg использует датчик угла колена для измерения углового положения и угловой скорости сгибания сустава. Измерения производятся до пятидесяти раз в секунду. Датчик угла колена располагается прямо на оси вращения колена[10].
Датчики момента расположены в трубке наконечника основания C-Leg. Эти датчики момента используют несколько тензодатчиков для определения, откуда была приложена сила к колену, с ноги, и величину этой силы[10].
C-Leg контролирует сопротивление сгибанию и разгибанию колена с помощью гидравлического цилиндра.
Эндопротезирование: от эндо — внутри
При наличии показаний к операции методом выбора может быть эндопротезирование суставов. В настоящее время разработаны и успешно применяются эндопротезы тазобедренного и коленного суставов. При остеопорозе эндопротезирование осуществляется конструкциями с цементным креплением. Дальнейшее консервативное лечение коленного сустава способствует снижению сроков реабилитации оперированных больных и повышению эффективности лечения.
Тазобедренный сустав – самый большой и сильно нагруженный сустав. Он состоит из головки бедренной кости, артикулирующей с вогнутой округлой вертлужной впадиной в кости таза.
Патологические изменения, вызывающие стойкое нарушение функции с болевым синдромом и контрактурой:
• Деформирующий артроз
• Асептический некроз головки бедренной кости
• Диспластический коксартроз
• Переломы и ложные суставы бедренной кости
• Посттравматические деформации вертлужной впадины
• Хронические формы дегенеративно-дистрофических заболеваний (артритов и артрозов)
• Болезнь Бехтерева с поражением тазобедренного сустава
• Несросшиеся переломы шейки бедра
• Анкилоз
Целью тотального эндопротезирования тазобедренного сустава (ТЭТБС) является уменьшение болевого синдрома и восстановление функции сустава. Данная операция является эффективным способом восстановления функции сустава, позволяющий значительно улучшить качество жизни человека.
При ТЭТБС заменяется проксимальный отдел бедра и вертлужная впадина. Пораженные участки сустава заменяются на эндопротез, повторяющий анатомическую форму здорового сустава и позволяющий выполнять необходимый объем движений.
В вертлужную впадину имплантируется ацетабулярная чашка. В чашку устанавливается полиэтиленовый или керамический вкладыш. В бедро имплантируется ножка с конусом на шейке для крепления головки эндопротеза.
Существуют различные методы фиксации компонентов эндопротеза к кости:
- цементная фиксация - крепление компонентов на костный цемент
- бесцементная/пресс-фит фиксация – первичная механическая фиксация за счет плотного прилегания компонента к кости, вторичная фиксация за счет остеоинтеграции, в процессе которой кость нарастает или врастает в пористую поверхность компонента.
Согласно ведущему Национальному Регистру эндопротезирования суставов Англии, Уэльса, Северной Ирландии и острова Мэн, наибольшей популярностью пользуется бесцементный метод фиксации эндопротеза тазобедренного сустава: 39,1% всех клинических случаев[11].
Для изготовления современных эндопротезов используются самые передовые и проверенные материалы: керамика, металл и полиэтилен, которые обладают высокой прочностью и хорошей приживаемостью в организме человека.
За последнее десятилетие все ведущие производители представили на рынок новые полиэтиленовые материалы, существенно снизившие риск износа, остеолиза и расшатывания компонентов, тем самым обеспечив больший срок выживаемости эндопротеза.
В зависимости от комбинации материалов отдельных компонентов принято различать несколько видов пар трений:
Выживаемость эндопротеза
Различные пары трения (комбинации материалов различных компонентов) имеют различную выживаемость в теле человека. Так, например, самой успешной по выживаемости и самой имплантируемой системой, согласно ведущему независимому источнику Национальному Регистру эндопротезирования суставов Англии, Уэльса, Северной Ирландии и острова Мэн, является бесцементная ножка CORAIL® с бесцементной чашкой PINNACLE® (Johnson&Johnson, DePuy Synthes) c парой трения керамика-полиэтилен. Данная конструкция показывает выживаемость около 98% за 10 лет наблюдений.
Риск осложнений при имплантации бесцементной ножки CORAIL® с бесцементной чашкой PINNACLE® с разными парами трения также наименьший[11].
При износе эндопротеза его полностью или частично заменяют новым, данная процедура называется ревизионным эндопотезированием сустава.
Вопросу успешного проведения ТЭТБС в долгосрочной перспективе посвящено множество публикаций. Имеются достоверные клинические результаты эндопротезирования системы бесцементной фиксации за 25-летний период наблюдений: так, например, отличная выживаемость эндопротеза производства компании Johnson& Johnson DePuy Synthes за 25 лет зафиксирована в 96,3% случаев[12]. В частности, отличные результаты демонстрирует бесцементное ТЭТБС у молодых пациентов моложе 30 лет: по итогам 13-летнего наблюдения выживаемость бедренной ножки составила 100%[13].
Выделяют ряд осложнений — ятрогенный остеомиелит (нагноение), асептическое расшатывание компонентов протеза, различные сосудистые и неврологические нарушения. Нагноение бывает бактериологического плана (стрептококки, стафилококкии т. п.), вирусного (герпес), или грибкового и борются с ним соответствующими средствами — антибиотиками, противовирусными и противогрибковыми препаратами, особенно если конкретную причину удаётся выявить в результате пункций и посевов.
На эндопротезирование в России распространяется практика выделения бюджетных средств. Ожидание операций по квоте в России занимает от 3 месяцев до полутора лет (по состоянию на 2014 год - в среднем около 20 месяцев). Для получения более оперативного хирургического лечения возможно обратиться в платные клиники или отделения.
Имплантаты полового члена применяются для восстановления половой функции мужчин при ряде заболеваний:
Имплантаты (от нем. Implantat, также импланты, от англ. implant) — класс изделий медицинского назначения, используемых для вживления в организм либо в роли протезов (заменителей отсутствующих органов человека), либо в качестве идентификатора (например, чип с информацией о домашнем животном, вживляемый под кожу). Имплантаты стоматологические — вид имплантатов, используемых для вживления в кости верхней и нижней челюсти в качестве основы для прикрепления как съемных, так и несъёмных стоматологических протезов.
Нейронные протезы являются электронными имплантатами, которые могут восстановить двигательные, чувствительные и познавательные функции, если они были утрачены в результате травмы или болезни. Примером таких устройств может служить кохлеарный имплантат. Это устройство восстанавливает функции, выполняемые барабанной перепонкой и стремечком, за счёт имитации частотного анализа в ушной улитке. Микрофон, установленный снаружи, улавливает звуки и обрабатывает их; тогда обработанный сигнал передается на имплантированный блок, который через микроэлектродный массив стимулирует волокна слухового нерва в улитке. Посредством замены или усиления утраченных чувств, эти устройства намерены улучшить качество жизни для людей с ограниченными возможностями.
В 2011 году первый критический момент произошел в короткой истории протезирования мозга: был разработан первый имплантат памяти.[14] Хотя человеческие эксперименты все еще находятся в планах на будущее, тесты на крысах дали неожиданные результаты. Устройство состояло из микропроцессора и 32 электродов для перехвата, репликации и декодирования импульсного кода, который один слой мозга посылает другому. Исследователи использовали два рычага для тестирования. Задача крысы состояла в том, чтобы переместить один рычаг, а затем через короткое время переместить другой. Оказалось, что после фармакологической блокировки мозговых импульсов крысы и отправки одинаковых импульсов с помощью приборов животное «запоминает», какой рычаг выбрать. Хотя первые попытки были очень примитивными, исследователи говорят, что будущее использование этой технологии в более сложных проектах поможет улучшить память у людей, страдающих инсультом или старческой деменцией.[15]
В России также имеются предприятия в городах Архангельск, Волгоград, Иваново, Ижевск, Новокузнецк, Ростов, Тюмень, Уфа, подчиненные Минтруда
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .