Правила Фе́йнмана в квантовой теории поля — правила соответствия между вкладами определенного порядка теории возмущений в матричные элементы матрицы рассеяния и диаграмм Фейнмана. Регулярный вывод правил Фейнмана основан на применении теоремы Вика для хронологических произведений к хронологическим произведениям полевых операторов, через интегралы от которых выражаются вклады в матрицу рассеяния. В правилах Фейнмана центральную роль играют пропагаторы квантовых полей, равные их хронологическим спариваниям, то есть вакуумным ожиданиям от парных хронологических произведений:
которые также равны причинным функциям Грина этих полей:
Наряду с пропагаторами , которым в диаграммах Фейнмана соответствуют линии, соединяющие точки х и у, и которые полностью характеризуют взаимодействующие поля, правила Фейнмана включают элементы, описывающие механизм взаимодействия и отражающие структуру лагранжиана взаимодействия рассматриваемой квантовополевой модели.
Существуют две разновидности правил Фейнмана
В дальнейшем термином «правила Фейнмана» будем называть именно правила Фейнмана в импульсном представлении.
В этом представлении вместо вышеприведенных выражений используют их фурье-образы , которым на диаграмме Фейнмана соответствуют внутренние линии, по которым как бы движутся частицы с импульсом р. Места встречи линий — вершины — описывают взаимодействия частиц. Поэтому, согласно правилам Фейнмана, вершинам отвечают множители в матричных элементах, передающие структуру лагранжианов взаимодействия. В качестве иллюстрации в таблице приведены правила соответствия для квантовой электродинамики в диагональной (иначе фейнмановской) калибровке электромагнитного поля.
Элементы Диаграммы | Фактор в S-матричном элементе | ||
---|---|---|---|
название | изображение | ||
1 | Вершина | ||
2 | Внутренняя фотонная линия | ||
3 | Внутренняя электронно-позитронная линия | ![]() | |
4 | Внешняя фотонная линия | ||
5 | Внешняя выходящая электронная линия | ||
6 | Внешняя выходящая линия | ![]() | |
7 | для построения вклада n-го порядка по e в матричный элемент заданного процесса следует нарисовать все диаграммы, содержащие ровно n вершин, соединяющие их внутренние линии и заданный набор внешних линий, определяемый суммарно начальным и конечным состоянием рассматриваемого процесса. При этом следует иметь в виду, что направления, указанные стрелками на электронных линиях, отвечают движению позитрона против направления стрелок | ||
8 | каждой из этих диаграмм по правилам соответствия из табл. путём перемножения факторов из правой колонки, упорядоченных по движению вдоль электронных линий, ставится в соответствие выражение, которое затем должно быть проинтегрировано по 4-импульсам и просуммировано по всем индексам всех внутр. линий; | ||
9 | если в диаграмме имеется замкнутых электронных петель, то всё выражение должно быть умножено на (— 1)l | ||
10 | если в диаграмме имеется топологическая симметрия k-го порядка, то есть можно переставить k вершин, не изменив топологию диаграммы, то следует добавить множитель (k!)−1 | ||
11 | если в начальном или конечном состоянии имеются тождественные частицы, то следует провести соответствующую симметризацию. |
Выражение, стоящее в первой строке таблицы правил соответствия, отвечает структуре лагранжиана взаимодействия , за исключением множителя , который учитывает тот факт, что вклад n-го порядка в S-матрицу содержит множитель :
Две следующие строчки содержат пропагаторы полей, а затем в правилах соответствия фигурируют вектор поляризации фотона и неквантованные дираковские спиноры , являющиеся решениями свободного уравнения Дирака и отвечающие электронам (и/или позитронам) в начальном и конечном состояниях.
Пользуясь приведёнными правилами Фейнмана, получим матричный элемент процесса е−+е− → е−+е− (то есть мёллеровского рассеяния электронов) в низшем, втором по e, порядке теории возмущений. Единственной диаграммой оказывается диаграмма, приведённая на рис. 6. Используя введённые на этом рисунке импульсные обозначения, положим, что импульсы электронов в начальном состоянии равны p1 и р2, а электроны конечного состояния обладают импульсами — q1 , q2 (при этом, разумеется, q10 < 0, q20 < 0). Используя правила (1), (2), (5), (6) и (8), находим:
Согласно правилу (11), это выражение следует ещё антисимметризовать по электронам начального и конечного состояний.
Из релятивистской квантовой теории поля метод диаграмм Фейнмана и правила Фейнмана непосредственно переносится в квантовую статистику при нулевой температуре и без труда формулируется для теории возмущений при конечной температуре.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .