WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Подкольцо кольца  — это пара , где  — кольцо, а  — мономорфизм (вложение) колец. Такое определение согласуется с общим понятием подобъекта в теории категорий.

В классическом определении подкольцо кольца рассматривается как подмножество , замкнутое относительно операций и из основного кольца. Это определение равносильно данному выше, однако в современном определении подчёркивается внутренняя структура подколец и связь между различными кольцами. Оно также легко обобщается на случай произвольных математических объектов (алгебраических, геометрических и т. п.). Разница между определениями аналогична разнице между теоретико-множественным и теоретико-категорным взглядом на математику.

В частности, различные определения кольца дают два основных содержательных понятия подкольца. В категории (всех) колец подкольцо, как в классическом определении, можно рассматривать как произвольное подмножество кольца, замкнутое по сложению и умножению. Более интересная ситуация в категории колец с единицей : морфизмы (гомоморфизмы) в этой категории должны отображать единицу кольца в единицу кольца (аналогично гомоморфизму полугрупп с единицей), поэтому подкольцо кольца также обязано содержать единицу: .

Категория устроена гораздо лучше, чем . Например, ядро любого гомоморфизма также является объектом этой категории. Из-за этого говоря о подкольце обычно подразумевают подкольцо в , если не оговорено обратное.

Примеры
  1. Любой идеал (левый, правый, двусторонний) замкнут относительно сложения и умножения, поэтому является подкольцом в .
  2. В идеал является подкольцом только тогда, когда содержит , поэтому он обязан совпадать со всем кольцом. Поэтому в собственные идеалы не являются подкольцами.
  3. В подкольцами в являются всевозможные главные идеалы . В не имеет собственных подколец.
  4. Кольцо целых чисел является подкольцом поля вещественных чисел и подкольцом кольца многочленов .

Литература

  • Винберг Э. Б. Курс алгебры. — 3-е изд. М.: Факториал Пресс, 2002. — 544 с. 3000 экз. ISBN 5-88688-060-7.
  • М. Атья, И. Макдональд. Введение в коммутативную алгебру. М.: Мир, 1972. — 160 с.

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии