WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Плюригармоническая функция — такая многомерная, два раза непрерывно дифференцируемая, функция комплексного переменного , что на любой комплексной прямой функция

есть гармоническая функция на множестве

.

Примечания

Каждая плюригармоническая функция является гармонической функцией, но не наоборот. Кроме того, может быть показано, что для голоморфной функции нескольких комплексных переменных её реальная (и мнимая) части являются локально плюригармоническими функциями. Однако, если функция гармоническая по каждой переменной в отдельности, это не означает, что она плюригармоническая.

Литература

  • Steven G. Krantz. Funktion theory of several complex variables. — AMS Chelsea Publishing, American Mathematical Society, Providence, Rhode Island, 2001.
  • Виноградов И.М. Математическая энциклопедия. В 5-и томах. — М.: Советская энциклопедия, 1984. — 608 с.
  • Владимиров В.С. Методы теории функций многих комплексных переменных. — М.: Наука, 1964. — 412 с.
  • Владимиров В.С. Обобщенные функции в математической физике. — М.: Наука. Гл. ред. физ.-мат. лит., 1979. — 320 с.
  • Ганнинг Р., Росси Х. Аналитические функции многих комплексных переменных. — М.: Мир, 1969. — 396 с.
  • Рудин У. Теория функций в единичном шаре из $C^n$. — М.: Мир, 1984. — 456 с.
  • Фукс Б.А. Введение в теорию аналитических функций многих комплексных переменных. — М.: Гос. изд. физ.- мат. лит., 1962. — 420 с.
  • Фукс Б.А. Специальные главы теории аналитических функций многих комплексных переменных. — М.: Гос. изд. физ.- мат. лит., 1963. — 428 с. с.
  • Шабат Б. В. Введение в комплексный анализ. В 2-х томах. — М.: Наука. Гл. ред. физ.-мат. лит., 1976. — 720 с.

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии