WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Неравенство треугольника Ружа связывает все попарные разности по Минковскому трёх множеств в произвольной группе.

Формулировка

Пусть группа и .

Тогда , где .

Неравенство треугольника со сложением

Имеется ещё одно неравенство[1], аналогичное неравенству треугольника Ружи, которое, однако, доказывается сложнее, чем классическое - с использованием неравенство Плюннеке-Ружа, которое само доказывается с испооьзованием классического неравенства Ружи.

Доказательство

Рассмотрим функцию , определяемую как . Тогда для каждого образа существует не менее различных прообразов вида . Это означает, что общее число прообразов не меньше, чем . Значит,

Аналогия с неравенством треугольника

Рассмотрим функцию[2][3], определяющую "расстояние между множествами" в терминах разности Минковского:

Эта функция не является метрикой, потому что для неё не выполняется равенство , но она, очевидно, симметрична, и из неравенства Ружа напрямую следует неравенство треугольника для неё:

Следствия

Подставив , получим

Подставив , получим

Подставив , получим

.

См. также

Примечания

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии